Volcano Watch: Kilauea Volcano’s Summit Eruption Is Now A Decade Old

A little more than 10 years ago, conditions around Kilauea Volcano’s summit were much different than today. The caldera floor was open to the public, and the air above it was normally clear. Halema‘uma‘u was an impressive sight, but peacefully in repose.

That quiet phase at Kilauea’s summit ended abruptly in 2008, ushering in a new era of lava lake activity that continues today.

Let’s review the past decade of this summit eruption.

After several months of increased seismic tremor and gas emissions, there was a small explosion in Halema‘uma‘u on March 19, 2008. The explosion marked the opening of a new crater, informally called the “Overlook crater.” During the remainder of 2008, several more explosions deposited spatter around Halema‘uma‘u, and the Overlook crater enlarged through collapses of its rim.

During 2009, small lava lakes were sometimes active deep within the Overlook crater. But since early 2010, the lava lake has been continuously present, steadily growing and rising higher.

The rise was interrupted March 5, 2011, when the lava lake briefly drained away because of the Kamoamoa eruption on Kilauea’s East Rift Zone.

The lava lake stabilized in 2012, rose to a higher level in 2013 and remained stable in 2014 and early 2015. In April 2015, the lava lake rose abruptly and briefly overflowed, spilling lava onto the floor of Halema‘uma‘u. High lake levels in 2016 allowed lava to be frequently observed from public viewing areas in Hawaii Volcanoes National Park, but a gradual drop in 2017 has made direct viewing of the lake less common during the past year.

The lava lake activity in 2018 is similar to that during the previous several years — relatively steady — and there are no signs that the summit eruption is slowing down.

Halema‘uma‘u now hosts one of the two largest lava lakes on Earth. It is likely the largest, but this cannot be said with complete certainty, as regular measurements are not available from the closest contender — Nyiragongo volcano in the Democratic Republic of the Congo.

Most persistent lava lakes are difficult to access, either because of geographic location (for example, Erebus in Antarctica) or political instability (for example, Nyiragongo). The size and accessibility of the Halema‘uma‘u lava lake, as well as the existing network of monitoring instruments, make it one of the premier locations to study lava lake behavior.

USGS Hawaiian Volcano Observatory scientists, along with collaborators from other institutions, are engaged in research to understand how the lava lake works and what it can tell us about the behavior and hazards of Kilauea.

For instance, we learned that the lake rises and falls in concert with changes in summit ground tilt. This tells us that the lake responds to the pressure of the magma chamber, so the lake level can be used like a pressure gauge.

The lake also fluctuates in concert with the lava pond at Pu‘u ‘O‘o on Kilauea’s East Rift Zone, illustrating the hydraulic connection between the two eruption sites. Lava chemistry at the two sites also is similar, adding further evidence of a close connection.

Another important finding deals with the nature of small explosions that occur at the lava lake from time to time.

HVO webcams revealed that the explosions are triggered by rockfalls from the Overlook crater rim impacting the lake surface. This observation is further evidence that the lava lake is very gassy, akin to lava foam. Rocks falling into this gas-rich, frothy lava triggers violent releases of gas that send spatter flying.

While the summit eruption has benefited science, it comes with many challenges, including persistent volcanic air pollution (vog) resulting from elevated sulfur dioxide gas emissions from the lava lake. Vog impacts the entire state at times, but the Ka‘u and Kona districts on the Island of Hawaii have been particularly hard hit.

Kilauea has a history of long-lasting summit eruptions, but it remains to be seen if the current eruption will go on for another decade. The past few years of stable activity suggest the summit lava lake is likely to continue into the near future.

However long it lasts, HVO will continue to study this awe-inspiring, unique feature to discover what more it can reveal about the volcano.

Volcano activity updates

This past week, Kilauea Volcano’s summit lava lake level fluctuated with summit inflation and deflation, ranging about 30.5-40.5 m (100-133 ft) below the vent rim. On the East Rift Zone, the 61g lava flow remained active downslope of Pu‘u ‘O‘o, with scattered breakouts on the upper part of the flow field and on Pulama pali, but no ocean entry. The 61g flows do not pose an immediate threat to nearby communities.

Mauna Loa is not erupting. Rates of deformation and seismicity have not changed significantly in the past week, persisting at above-long-term background levels. Sixteen microearthquakes (magnitudes less than 2) were located beneath the summit caldera, upper Southwest Rift Zone and western flank of the volcano at depths of 0-5 km (0-3 mi). GPS and InSAR measurements continue to show slow deformation related to inflation of a magma reservoir beneath the summit and upper Southwest Rift Zone. No significant changes in volcanic gas emissions were measured.

No earthquakes were reported felt in the Hawaiian Islands this past week.

Volcanic Activity Threatens Families Again On Ambae Island In Vanuatu

Volcanic activity on Vanuatu’s Ambae Island has picked up again over the last few days, with fresh ash fall reported across the island’s west and south.

Communities in the western and southern parts of Ambae are suffering badly from thick periodic ash fall which threaten their health, animals and vegetation.

The entire island was evacuated late last year when the volcano at the island’s centre erupted, blanketing the island in ash, suffocating crops and contaminating water sources.

The only population returned to their homes when the eruption settled down after a month, but on Sunday night the volcano’s alert level was raised from level 2 to 3, a “state of minor eruption.”

The Geohazards Department’s Melinda Aru said the volcano was showing increased activity and an exclusion zone had been extended to three km around the crater lake.

“We’ve got a few reports coming from Ambae concerning ash fall on the west, southwest and northwest as of last week until Sunday. We still have reports from Ambae concerning ash fall.”

Melinda Aru said the chance of the eruption increasing to the level seen in October last year was highly unlikely.

Reports on the Vanuatu Daily Post website on Monday said that people may need to shelter livestock and water tanks as the Lombenben volcano continues to emit ash.

The Vanuatu Meteorology and Geo-hazards Department still grades the Ambae volcano at major unrest stage.

Destruction caused by the ash fall in affected areas is described as literally similar to a cyclone wiping out trees and crops.

Its weight caused plants and crops in the gardens like banana, cassava and cabbages to collapse.

Destruction done by volcanic ash on people, plants and crops depend largely on its thickness. Though it may causes health problems to livestock and human such as skin irritation and eye problem, volcanic ash can make the soil fertile.

Responsible authorities have warned that everyone, particularly children should be protected from the volcano’s ash and poisonous gases that poses a health risk.

The Vanuatu Red Cross Society (RCS) said it was working to establish a sub-branch in west Ambae to support communities during disasters.

Scientists Helping To Improve Understanding Of Plate Tectonics

Scientists at The Australian National University (ANU) are helping to improve understanding of how rocks in Earth’s hot, deep interior enable the motions of tectonic plates, which regulate the water cycle that is critical for a habitable planet.

Research team leader Professor Ian Jackson said tectonic plates were continuously created at mid-ocean ridges and destroyed when they sink back into the Earth’s mantle.

“Plate tectonics is responsible for diverse geological phenomena including continental drift, mountain building and the occurrence of volcanoes and earthquakes,” said Professor Jackson from the ANU Research School of Earth Sciences.

The stirring of the Earth’s interior, which is responsible for the plate motions at the surface, has resulted in the Earth’s gradual cooling over its 4.5 billion-year life.

He said defects allowed the normally strong and hard minerals of the Earth’s deep interior to change their shape and flow like viscous fluid on geological timescales.

“We have found that flaws in the regular atomic packing in the dominant upper-mantle mineral, called olivine, that become more prevalent under oxidising conditions, substantially reduce the speeds of seismic waves,” Professor Jackson said.

Seismic waves, caused by earthquakes, are used to image the Earth’s deep interior in a manner similar to medical CAT scanning.

“Our new findings challenge a long-held theory that defects involving water absorption in these normally dry rocks could control both their viscosity and seismic properties,” Professor Jackson said.

ANU Research School of Earth Sciences (RSES) PhD scholar Chris Cline is the lead author of the study undertaken in collaboration with RSES colleagues and Professor Ulrich Faul at the Massachusetts Institute of Technology in the United States.

The team used specialised equipment in a laboratory at ANU to make synthetic specimens similar to upper mantle rocks and measured their rigidity, which controls seismic wave speeds, under conditions simulating those of the Earth’s mantle.

Professor Jackson said the research was particularly relevant to environments where old, cold, and oxidised tectonic plates sink into the Earth’s hot interior.

“We have the potential to help map the extent of oxidised regions of the Earth’s mantle that play such an important role in the chemical evolution of Earth,” he said.

Jupiter’s Atmospheric Beauty Is More Than Skin Deep

In the year and a half NASA’s Juno spacecraft has been orbiting Jupiter, the science team led by Southwest Research Institute’s Dr. Scott Bolton has discovered that the orange and white bands that characterize Jupiter’s outer atmosphere extend thousands of miles into the gas giant’s atmosphere. The findings are part of a four-article collection about Juno science results in the March 8th edition of the journal Nature.

“With Juno only about a third of the way through its primary mission, we are being presented with a whole new Jupiter that is shaking up our basic understanding of giant planets throughout the universe,” said Bolton, principal investigator of the mission and a coauthor of the Nature papers. “Surprisingly, the Jupiter we grew up knowing and loving, dressed in gorgeous colorful bands across its midsection, is now known to be beautiful down deep as well.”

The four Nature articles focus on the structure of Jupiter’s deep interior and the surprising discovery of clusters of cyclones encircling Jupiter’s poles. One paper discusses Juno’s unique orbit, and how the spacecraft’s precise radio tracking system measures Jupiter’s gravity field.

“This Juno system is so technically advanced that measurement capabilities have been improved by orders of magnitude in precision,” Bolton said. This improved accuracy allowed scientists to detect an asymmetry in Jupiter’s structure at depths near 3,000 km. “This asymmetry mirrors what we see in Jupiter’s cloud layer, those colorful bands that blow across Jupiter.” A second paper describes how these belts and zones manifest themselves as jet streams deep in Jupiter’s atmosphere.

“This discovery surprised the entire team,” Bolton said. “The Juno data show that what seemed like a weather pattern on Jupiter extends down well below the depth where sunlight penetrates, which means that something other than weather may be driving these forces.

“In total, Jupiter’s jet streams contain about 1 percent of the gas giant’s mass. That means a mass equivalent to about three Earths is moving around Jupiter in the form of jet streams,” he continued. “That is a lot of atmosphere to be moving with jet streams. On Earth, our atmosphere is less than a millionth of Earth’s mass!”

A third paper looks at how the symmetric layers of Jupiter work and reports that below the jet stream layer, Jupiter rotates as a rigid body. “Somehow Jupiter transitions from the jet stream layer that rotates like the top cloud layer to a rigid body deep inside where everything moves together,” Bolton said. “The transition might have something to do with the creation of Jupiter’s strong magnetic field.”

Understanding the transition between the atmospheric layer and the more rigid layers that lie beneath will be revealed during the remainder of Juno’s primary mission over the next couple of years. The fourth paper provided the first detailed look at how the familiar bands give way to giant cyclones organized in geometric patterns at both of Jupiter’s poles.

“Before Juno, scientists knew little about Jupiter’s poles due to the Earth’s perspective of the planet,” he said. Previous spacecraft flew past the gas giant at an equatorial level, capturing wonderful views of the zones and belts but revealing little about its polar regions. “Turns out, Jupiter is hardly recognizable from a polar perspective.”

Visible and infrared images obtained from above each pole during Juno’s first five orbits reveal persistent polygonal patterns of large cyclones. In the north, eight circumpolar cyclones surround a single polar cyclone. In the south, one polar cyclone is encircled by five circumpolar cyclones.

“These cyclones are huge with winds speeds as great as 220 miles per hour,” Bolton said. “These novel features seem to exist in harmony, close together and persistent. They are surprisingly different from the single storm pattern that the Cassini spacecraft measured at Saturn’s poles.”

Launched in 2011, Juno arrived at Jupiter in 2016. Every 53 days, the spacecraft swings in close to the planet, studying its auroras and probing beneath the obscuring cloud cover to learn more about the planet’s origins, structure, weather layer and magnetosphere.

Mystery Of Purple Lights In Sky Solved With Help From Citizen Scientists

Notanee Bourassa knew that what he was seeing in the night sky was not normal. Bourassa, an IT technician in Regina, Canada, trekked outside of his home on July 25, 2016, around midnight with his two younger children to show them a beautiful moving light display in the sky — an aurora borealis. He often sky gazes until the early hours of the morning to photograph the aurora with his Nikon camera, but this was his first expedition with his children. When a thin purple ribbon of light appeared and starting glowing, Bourassa immediately snapped pictures until the light particles disappeared 20 minutes later. Having watched the northern lights for almost 30 years since he was a teenager, he knew this wasn’t an aurora. It was something else.

From 2015 to 2016, citizen scientists — people like Bourassa who are excited about a science field but don’t necessarily have a formal educational background — shared 30 reports of these mysterious lights in online forums and with a team of scientists that run a project called Aurorasaurus. The citizen science project, funded by NASA and the National Science Foundation, tracks the aurora borealis through user-submitted reports and tweets.

The Aurorasaurus team, led by Liz MacDonald, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, conferred to determine the identity of this mysterious phenomenon. MacDonald and her colleague Eric Donovan at the University of Calgary in Canada talked with the main contributors of these images, amateur photographers in a Facebook group called Alberta Aurora Chasers, which included Bourassa and lead administrator Chris Ratzlaff. Ratzlaff gave the phenomenon a fun, new name, Steve, and it stuck.

But people still didn’t know what it was.

Scientists’ understanding of Steve changed that night Bourassa snapped his pictures. Bourassa wasn’t the only one observing Steve. Ground-based cameras called all-sky cameras, run by the University of Calgary and University of California, Berkeley, took pictures of large areas of the sky and captured Steve and the auroral display far to the north. From space, ESA’s (the European Space Agency) Swarm satellite just happened to be passing over the exact area at the same time and documented Steve.

For the first time, scientists had ground and satellite views of Steve. Scientists have now learned, despite its ordinary name, that Steve may be an extraordinary puzzle piece in painting a better picture of how Earth’s magnetic fields function and interact with charged particles in space. The findings are published in a study released today in Science Advances.

“This is a light display that we can observe over thousands of kilometers from the ground,” said MacDonald. “It corresponds to something happening way out in space. Gathering more data points on STEVE will help us understand more about its behavior and its influence on space weather.”

The study highlights one key quality of Steve: Steve is not a normal aurora. Auroras occur globally in an oval shape, last hours and appear primarily in greens, blues and reds. Citizen science reports showed Steve is purple with a green picket fence structure that waves. It is a line with a beginning and end. People have observed Steve for 20 minutes to 1 hour before it disappears.

If anything, auroras and Steve are different flavors of an ice cream, said MacDonald. They are both created in generally the same way: Charged particles from the Sun interact with Earth’s magnetic field lines.

The uniqueness of Steve is in the details. While Steve goes through the same large-scale creation process as an aurora, it travels along different magnetic field lines than the aurora. All-sky cameras showed that Steve appears at much lower latitudes. That means the charged particles that create Steve connect to magnetic field lines that are closer to Earth’s equator, hence why Steve is often seen in southern Canada.

Perhaps the biggest surprise about Steve appeared in the satellite data. The data showed that Steve comprises a fast moving stream of extremely hot particles called a sub auroral ion drift, or SAID. Scientists have studied SAIDs since the 1970s but never knew there was an accompanying visual effect. The Swarm satellite recorded information on the charged particles’ speeds and temperatures, but does not have an imager aboard.

“People have studied a lot of SAIDs, but we never knew it had a visible light. Now our cameras are sensitive enough to pick it up and people’s eyes and intellect were critical in noticing its importance,” said Donovan, a co-author of the study. Donovan led the all-sky camera network and his Calgary colleagues lead the electric field instruments on the Swarm satellite.

Steve is an important discovery because of its location in the sub auroral zone, an area of lower latitude than where most auroras appear that is not well researched. For one, with this discovery, scientists now know there are unknown chemical processes taking place in the sub auroral zone that can lead to this light emission.

Second, Steve consistently appears in the presence of auroras, which usually occur at a higher latitude area called the auroral zone. That means there is something happening in near-Earth space that leads to both an aurora and Steve. Steve might be the only visual clue that exists to show a chemical or physical connection between the higher latitude auroral zone and lower latitude sub auroral zone, said MacDonald.

“Steve can help us understand how the chemical and physical processes in Earth’s upper atmosphere can sometimes have local noticeable effects in lower parts of Earth’s atmosphere,” said MacDonald. “This provides good insight on how Earth’s system works as a whole.”

The team can learn a lot about Steve with additional ground and satellite reports, but recording Steve from the ground and space simultaneously is a rare occurrence. Each Swarm satellite orbits Earth every 90 minutes and Steve only lasts up to an hour in a specific area. If the satellite misses Steve as it circles Earth, Steve will probably be gone by the time that same satellite crosses the spot again.

In the end, capturing Steve becomes a game of perseverance and probability.

“It is my hope that with our timely reporting of sightings, researchers can study the data so we can together unravel the mystery of Steve’s origin, creation, physics and sporadic nature,” said Bourassa. “This is exciting because the more I learn about it, the more questions I have.”

As for the name “Steve” given by the citizen scientists? The team is keeping it as an homage to its initial name and discoverers. But now it is STEVE, short for Strong Thermal Emission Velocity Enhancement.

Other collaborators on this work are: the University of Calgary, New Mexico Consortium, Boston University, Lancaster University, Athabasca University, Los Alamos National Laboratory and the Alberta Aurora Chasers Facebook group.

Underwater Volcano Behavior Captured By Timely Scientific Expedition

Researchers got a rare opportunity to study an underwater volcano in the Caribbean when it erupted while they were surveying the area.

The research, published today in the journal Geochemistry, Geophysics, Geosystems, provides new insight into the little-studied world of underwater volcanoes. It investigated a volcano named Kick-’em-Jenny (KeJ), which is thought to be named after the turbulent waters nearby.

The team from Imperial College London, Southampton and Liverpool universities, in collaboration with The University of the West Indies Seismic Research Centre (SRC), were collecting ocean-bottom seismometers aboard the NERC research ship R.R.S. James Cook as part of a larger experiment when they were alerted to the volcano erupting.

Direct observation of submarine eruptions are very rare, but having the ship nearby allowed them to get to the volcano in time to record the immediate aftermath of the eruption.

Using ship-based imaging technology, the team was able to survey the volcano, observing gas coming from the central cone. The data was then combined with previous surveys going back more than 30 years to reveal the long-term pattern of activity.

Kick-’em-Jenny is one of the Caribbean’s most active volcanoes. It sits eight kilometres off the northern coast of the island of Grenada, and was first discovered in 1939 when a 300-metre column of ash and dust was spotted rising from the ocean.

However, volcanic activity at KeJ is usually detected by accompanying seismic activity picked up on land-based seismometers. These recordings show that the volcano is active on a decadal timescale.

Lead author PhD student Robert Allen, from the Department of Earth Science & Engineering at Imperial, said: “There are surveys of the Kick-’em-Jenny area going back 30 years, but our survey in April 2017 is unique in that it immediately followed an eruption. This gave us unprecedented data on what this volcanic activity actually looks like, rather than relying on interpreting seismic signals.”

The team found that the volcano has frequent cycles of lava ‘dome’ growth followed by collapse through landslides. Similar cycles have been recently witnessed on the nearby volcanic island of Montserrat.

Co-author Dr Jenny Collier, from the Department of Earth Science & Engineering at Imperial, said: “Kick-’em-Jenny is a very active volcano but because it is submarine is less well studied than other volcanoes in the Caribbean. Our research shows that whilst it has quite regular cycles, it is on a relatively small scale, which will help inform future monitoring strategies.”

SRC Director Professor Richard Robertson said: “This study has confirmed very useful recent insights on the activity and evolution of Kick-’em-Jenny volcano. For us, the agency with responsibility for monitoring this volcano, the results of this collaborative research project enable us to better quantify our existing model of this volcano and help in developing strategies for managing future eruptions.”

Any volcano on land which was as lively as KeJ would be constantly monitored by satellites and an array of local instruments looking for the slightest change in behaviour that could precede a major volcanic eruption.

Under the ocean this job is much more difficult, as the electromagnetic energy emitted by satellites cannot penetrate the sea surface and instruments are much more difficult to set up on the volcano itself. Scientists therefore know comparatively little about the growth and long-term behaviour of a fully submerged volcanic cone like KeJ.

The most famous submarine volcanoes are those that lead to the formation of new islands, such as the eruption of Surtsey in Iceland in the 1960s. However, rather than a growing cone, the surveys show significant mass loss from KeJ due to frequent landslides in recent decades.

Comparison with recent studies elsewhere has shown that similar, frequent, small volume landslides may be a fundamental mechanism in the long-term evolution of active submarine volcanoes.

Unique Diamond Impurities Indicate Water Deep In Earth’s Mantle

A UNLV scientist has discovered the first direct evidence that fluid water pockets may exist as far as 500 miles deep into the Earth’s mantle.

Groundbreaking research by UNLV geoscientist Oliver Tschauner and colleagues found diamonds pushed up from the Earth’s interior had traces of unique crystallized water called Ice-VII.

The study, “Ice-VII inclusions in Diamonds: Evidence for aqueous fluid in Earth’s deep Mantle,” was published Thursday in the journal Science.

In the jewelry business, diamonds with impurities hold less value. But for Tschauner and other scientists, those impurities, known as inclusions have infinite value, as they may hold the key to understanding the inner workings of our planet.

For his study, Tschauner used diamonds found in China, the Republic of South Africa, and Botswana that surged up from inside Earth. “This shows that this is a global phenomenon,” the professor said.

Scientists theorize the diamonds used in the study, were born in the mantle under temperatures reaching more than 1,000-degrees Fahrenheit.

The mantle — which makes up more than 80 percent of the Earth’s volume — is made of silicate minerals containing iron, aluminum, and calcium among others.

And now we can add water to the list.

The discovery of Ice-VII in the diamonds is the first known natural occurrence of the aqueous fluid from the deep mantle. Ice-VII had been found in prior lab testing of materials under intense pressure. Tschauner also found that while under the confines of hardened diamonds found on the surface of the planet, Ice-VII is solid. But in the mantel, it is liquid.

“These discoveries are important in understanding that water-rich regions in the Earth’s interior can play a role in the global water budget and the movement of heat-generating radioactive elements,” Tschauner said.

This discovery can help scientists create new, more accurate models of what’s going on inside the Earth, specifically how and where heat is generated under the Earth’s crust.

In other words: “It’s another piece of the puzzle in understanding how our planet works,” Tschauner said.

Of course, as it often goes with discoveries, this one was found by accident, explained Tschauner.

“We were looking for carbon dioxide,” he said. “We’re still looking for it, actually,”