JUST IN: New Report Shows Atmospheric Radiation Increasing via Cosmic Rays

As you might have guessed, this is no surprise to this researcher. It is good to see the science community taking this scenario very seriously. What’s a bit different is the choice to go public with this hard hitting evidence highlighting the consequence of Earth’s weakening magnetic field, along with Cycle 24’s solar activity reaching solar minimum.

I am once again humbled to bring evidence showing my research is months, sometimes a year or two or three, ahead of fundamental science communities.

As a brief reminder, the less intensity of solar activity such as coronal mass ejections (CMEs), solar flares, and coronal holes – the greater amount of galactic cosmic rays enter Earth’s atmosphere, and the higher charged particles penetrate Earth’s lithosphere, and in my personal research, has an influence down to the mantle.

Last week’s double launch of space weather balloons over Mexico and California was a success. The goal of the experiment was to measure cosmic rays in the atmosphere above both countries and compare the results. A first look at the data reveal big differences.

These curves show dose rate vs. altitude. They diverge rapidly above ~15,000 feet, with radiation levels over central California typically 1.5 times higher than over Mexico. This means air travelers over California can expect to receive significantly greater doses of cosmic radiation compared to their counterparts flying south of the border. In both places, radiation levels reached a peak in the stratosphere. At those altitudes, radiation dose rates were 60 times greater than sea level for Mexico, 90 times greater than sea level for California.

The reason for these differences is Earth’s magnetic field which, generally speaking, provides greater shielding against cosmic rays near the equator (Mexico) than at mid-latitudes (California). The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. They trace secondary cosmic rays, the spray of debris created when primary cosmic rays from deep space hit the top of Earth’s atmosphere.

Soon after our monitoring program began, we quickly realized that radiation levels were increasing. Why? The main reason is the solar cycle. In recent years, sunspot counts have plummeted as the Sun’s magnetic field weakens. This has allowed more cosmic rays from deep space to penetrate the solar system. As 2017 winds down, our latest measurements show the increase continuing at pace–with an interesting exception due to an influx of a large X9.3 solar flare.

In Sept. 2017, the quiet Sun surprised space weather forecasters with a sudden outburst of explosive activity. On Sept. 3rd, a huge sunspot appeared. In the week that followed, it unleashed the strongest solar flare in more than a decade (X9-class), hurled a powerful CME toward Earth, and sparked a severe geomagnetic storm (G4-class). During the onslaught we quickened the pace of balloon launches and found radiation dropping to levels we hadn’t seen since 2015. The flurry of solar flares and CMEs actually pushed some cosmic rays away from Earth.

Interestingly, after the Sun’s outburst radiation levels in the stratosphere took more than 2 months to fully rebound. Now they are back on track, increasing steadily as the quiet Sun resumes its progress toward Solar Minimum. The fact that we can make these measurements over California shows that you do not have to travel to polar regions to experience space weather. We have known charged particles can effect weather patterns worldwide.

_____________________

Update on Kids Christmas Fund

We have been able to place a few wonderful gifts under the tree for my two beautiful daughters thanks to you. If it’s possible, I will try to fulfill their Christmas list the best I can. There are two big items each has asked for. ———–Alexa (9yrs) wants one of those new hoover boards. Sophia (5yrs) wants an AmericanGirl doll “Tenney”.

For those seeing this for the first time, there really is no need to explain further this uncomfortable position I’ve put myself in. Because of my choices some years ago to venture off into independent research and publishing – I am learning, mostly the hard way, to navigate the peaks and valleys of not having that comfortable umbrella of the more structured agencies. We all make our choices – so it is what it is.
Cheers, Mitch
________________________

Here’s wishing you a Merry Christmas and a Happy New Year! Wishing you lots of love, joy and happiness. May your Christmas sparkle with moments of love, laughter and goodwill, And may the year ahead be full of contentment and joy.

Kids Christmas Fund

 

 

Galaxy Orbits In The Local Supercluster

A team of astronomers from Maryland, Hawaii, Israel and France has produced the most detailed map ever of the orbits of galaxies in our extended local neighborhood, showing the past motions of almost 1,400 galaxies within 100 million light years of the Milky Way.

The team reconstructed the galaxies’ motions from 13 billion years in the past to the present day. The main gravitational attractor in the mapped area is the Virgo Cluster, with 600 trillion times the mass of the Sun, 50 million light years from us. Over a thousand galaxies have already fallen into the Virgo Cluster, while in the future all galaxies that are currently within 40 million light years of the cluster will be captured. Our Milky Way galaxy lies just outside this capture zone. However, the Milky Way and Andromeda galaxies, each with 2 trillion times the mass of the Sun, are destined to collide and merge in 5 billion years.

“For the first time, we are not only visualizing the detailed structure of our Local Supercluster of galaxies but we are seeing how the structure developed over the history of the universe. An analogy is the study of the current geography of the Earth from the movement of plate tectonics,” said co-author Brent Tully from the University of Hawaii’s Institute for Astronomy.

These dramatic merger events are only part of a larger show. There are two overarching flow patterns within this volume of the universe. All galaxies in one hemisphere of the region — including our own Milky Way — are streaming toward a single flat sheet. In addition, essentially every galaxy over the whole volume is flowing, as a leaf would in a river, toward gravitational attractors at far greater distances.

Representations of the orbits can be seen in a video and, alternatively, with an interactive model. With the interactive model, a viewer can pan, zoom, rotate and pause/activate the time evolution of movement along orbits. The orbits are shown in a reference frame that removes the overall expansion of the universe. What we are seeing are the deviations from cosmic expansion caused by the interactions of local sources of gravity.

No Tsunami Threat To Guam From Earthquakes In Micronesia Friday

Two earthquakes above magnitude 6 hit Micronesia on Friday, Dec. 8.

The U.S. Geological Survey recorded an earthquake with a magnitude 6.5 earthquake in Micronesia at 10:22 a.m.

The earthquake was centered 33 miles northwest of Fais, Micronesia — about 385 miles southeast of Guam — at a depth of 8.5 miles, the U.S.G.S. stated online.

At 7:51 p.m. the same day, a magnitude 6.4 earthquake struck 155 miles east-northeast of Yap and 380 miles southwest of Guam. The quake struck at a depth of 39 mile.

There were no threats of tsunamis from either quake. Three other quakes between magnitude 4.7 and 5.5 were also recorded in the region, according to the U.S.G.S. website.

Black Holes’ Magnetism Surprisingly Wimpy

Black holes are famous for their muscle: an intense gravitational pull known to gobble up entire stars and launch streams of matter into space at almost the speed of light.

It turns out the reality may not live up to the hype.

In a paper published today in the journal Science, University of Florida scientists have discovered these tears in the fabric of the universe have significantly weaker magnetic fields than previously thought.

A 40-mile-wide black hole 8,000 light years from Earth named V404 Cygni yielded the first precise measurements of the magnetic field that surrounds the deepest wells of gravity in the universe. Study authors found the magnetic energy around the black hole is about 400 times lower than previous crude estimates.

The measurements bring scientists closer to understanding how black holes’ magnetism works, deepening our knowledge of how matter behaves under the most extreme conditions — knowledge that could broaden the limits of nuclear fusion power and GPS systems.

The measurements also will help scientists solve the half-century-old mystery of how “jets” of particles traveling at nearly the speed of light shoot out of black holes’ magnetic fields, while everything else is sucked into their abysses, said study co-author Stephen Eikenberry, a professor of astronomy in UF’s College of Liberal Arts and Sciences.

“The question is, how do you do that?” Eikenberry said. “Our surprisingly low measurements will force new constraints on theoretical models that previously focused on strong magnetic fields accelerating and directing the jet flows. We weren’t expecting this, so it changes much of what we thought we knew.”

Study authors developed the measurements from data collected in 2015 during a black hole’s rare outburst of jets. The event was observed through the lens mirror of the 34-foot Gran Telescopio Canarias, the world’s largest telescope, co-owned by UF and located in Spain’s Canary Islands, with the help of its UF-built infrared camera named CIRCE (Canarias InfraRed Camera Experiment).

Smaller jet-producing black holes, like the one observed for the study, are the rock stars of galaxies. Their outbursts occur suddenly and are short-lived, said study lead author Yigit Dalilar and co-author Alan Garner, doctoral students in UF’s astronomy department. The 2015 outbursts of V404 Cygni lasted only a couple of weeks. The previous time the same black hole had a similar episode was in 1989.

“To observe it was something that happens once or twice in one’s career,” Dalilar said. “This discovery puts us one step closer to understanding how the universe works.”

New Stellar Stream Discovered By Astronomers

An international team of astronomers has detected a new thin stellar stream in the halo of the Milky Way galaxy. The newly discovered feature, named “jet stream,” could help researchers answer fundamental questions about the mass distribution of the Milky Way’s dark matter halo. The finding was presented November 24 in a paper published on the arXiv pre-print server.

Stellar streams are remnants of dwarf galaxies or globular clusters that once orbited a galaxy but have been disrupted and stretched out along their orbits by tidal forces of their hosts. So far, nearly 20 stellar streams have been identified in the Milky Way, just a few in the Andromeda galaxy, and about 10 outside the Local Group.

Astronomers are interested in finding new stellar streams in the Milky Way, as they hope that such features could answer some crucial questions about the the galaxy. For instance, stellar streams could help us understand the large-scale mass distribution of the galactic dark matter halo. Moreover, they could confirm whether or not our galaxy contains low-mass dark matter subhalos.

Now, a group of researchers led by Prashin Jethwa of the European Southern Observatory (ESO) has found a new stellar stream in the Milky Way using the Search for the Leading Arm of Magellanic Satellites (SLAMS) optical survey. SLAMS utilizes the 4-m Blanco telescope at Cerro Tololo InterAmerican Observatory in Chile and is used to look for satellites of the Magellanic Clouds. However, the observations conducted by Jethwa’s team in December 2016 and January 2017, have accidentally revealed the presence of a new stellar stream in the Milky Way’s halo.

“We recently carried out a mini survey which led to the fortuitous discovery of a thin stellar stream in the outer halo, which we name the jet stream,” the researchers wrote in the paper.

According to the study, the jet stream is located about 95,000 light years away from the Earth and crosses the constellations of Hydra and Pyxis. The researchers estimate that the stream has a width of approximately 293 light years, which morphologically places it in the category of thin stellar streams along with Pal 5, GD-1 and ATLAS. The authors suggest that such thinness could indicate that a globular cluster was a progenitor of this stream.

The research also revealed that the jet stream has a mass of about 25,000 solar masses, which makes it one of the least massive stellar streams known to date. Moreover, they found that the jet stream consists of mainly metal-poor stars, and its age was calculated to be about 12.5 billion years.

Although fundamental parameters of the jet stream were determined by Jethwa’s team, still more studies are necessary to further characterize it and confirm its origin.

“Additional imaging is planned to attempt to trace the stream beyond the current survey footprint, followed by a spectroscopic campaign to determine radial velocities, metallicities, and detailed abundances, shedding light on the nature and orbital history of the progenitor. Finally, deeper, uniform imaging along the stream track will be required to robustly detect density perturbations caused by possible subhalo encounters,” the astronomers concluded.

Meteorite Analysis Shows Reduced Salt Is Key In Earth’s New Recipe

Scientists have found the halogen levels in the meteorites that formed the Earth billions of years ago are much lower than previously thought.

The research was carried out by international team of researchers, led by the Universities of Manchester and Oxford, and has recently been published in Nature.

Halogens such as Chlorine, Bromine and Iodine, form naturally occurring salts which are essential for most life forms — but too much can prohibit life. When previously comparing halogen levels in meteorites that formed the planet, the Earth should have unhealthy levels of salt.

Many theories have been put forward to explain the mystery of why, instead, Earth salt concentrations are ‘just right’. The answer turns out to be quite simple — previous estimates meteorites were just too high.

Using a new analytical technique, the team looked at different kinds of chondrite meteorites, a type of primitive meteorite approximately 4.6 billion years old.

Dr Patricia Clay, lead author of the study from the University of Manchester’s School of Earth and Environmental Sciences (SEES), said: ‘These kinds of meteorites are remnants of the solar nebula, a molecular cloud made up of interstellar dust and hydrogen gas that predates our Solar System. Studying them provides important clues for our understanding of the origin and age of the Solar System.’

How the Earth acquired its volatile elements has long interested scientists. To answer the question the team re-examined one of the largest collection of meteorites assembled for this type of study.

They found that previous estimates of halogen levels in meteorites were too high, but the technique used by the team helped them avoid contaminated sources.

Dr Clay explains: “No single model of Earth formation using the old meteorite measurements could easily account for the halogens we see today. Some of these models needed catastrophic planetary wide removal of halogens without affecting related elements — which just didn’t make sense.”

Professor Ray Burgess, co-author and also from The University of Manchester, added: “The new simplified model we have developed is a big step forward in understanding how key ingredients essential for life were brought to our planet, including water that probably helped distribute the halogens between the planetary interior and surface.”

The results were a huge surprise, and time after time each meteorite measured was found to have halogen levels far lower than previously thought, and remarkably consistent between different types of meteorites.

Professor Chris Ballentine, co-author from the University of Oxford and who designed the study, added: “Another big surprise of the study was just how uniform the halogen content of very different meteorites actually is — this is an incredibly important picture into the processes that formed the meteorites themselves — but also means that whatever meteorites formed the earth the halogen ingredients for Earth’s recipe remains the same.”

Two Super-Earths Around Red Dwarf K2-18

New research using data collected by the European Southern Observatory (ESO) has revealed that a little-known exoplanet called K2-18b could well be a scaled-up version of Earth.

Just as exciting, the same researchers also discovered for the first time that the planet has a neighbor.

“Being able to measure the mass and density of K2-18b was tremendous, but to discover a new exoplanet was lucky and equally exciting,” says lead author Ryan Cloutier, a PhD student in U of T Scarborough’s Centre for Planet Science, U of T’s Department of Astronomy and Astrophysics, and Université de Montréal Institute for research on exoplanets (iREx).

Both planets orbit K2-18, a red-dwarf star located about 111 light years away in the constellation Leo. When the planet K2-18b was first discovered in 2015, it was found to be orbiting within the star’s habitable zone, making it an ideal candidate to have liquid surface water, a key element in harbouring conditions for life as we know it.

The data set used by the researchers came from the High Accuracy Radial Velocity Planet Searcher (HARPS) using the ESO’s 3.6m telescope at La Silla Observatory, in Chile. HARPS allows for measurements of radial velocities of stars, which can be affected by the presence of nearby planets, to be taken with the highest accuracy currently available. The instrument makes it possible to detect very small planets orbiting those stars.

In order to figure out whether K2-18b was a scaled-up version of Earth (mostly rock), or a scaled-down version of Neptune (mostly gas), researchers had to first figure out the planet’s mass, using radial velocity measurements taken with HARPS.

“If you can get the mass and radius, you can measure the bulk density of the planet and that can tell you what the bulk of the planet is made of,” says Cloutier.

After using a machine-learning approach to figure out the mass measurement, Cloutier and his team were able to determine the planet is either a mostly rocky planet with a small gaseous atmosphere — like Earth, but bigger — or a mostly water planet with a thick layer of ice on top of it.

“With the current data, we can’t distinguish between those two possibilities,” he says. “But with the James Webb Space Telescope (JWST) we can probe the atmosphere and see whether it has an extensive atmosphere or it’s a planet covered in water.”

The JWST, which will be launched in 2019, will be instrumental in collecting a range of data for studying the solar system, early universe and exoplanets.

“There’s a lot of demand to use this telescope, so you have to be meticulous in choosing which exoplanets to look at,” says René Doyon, a co-author on the paper who is also the principal investigator for NIRISS, the Canadian Space Agency instrument on board JWST.

“K2-18b is now one of the best targets for atmospheric study, it’s going to the near top of the list.”

It was while looking through the data of K2-18b that Cloutier noticed something unusual. In addition to a signal occurring every 39 days from the rotation of K2-18, and one taking place every 33 days from the orbit of K2-18b, he noticed a different signal occurring every nine days.

“When we first threw the data on the table we were trying to figure out what it was. You have to ensure the signal isn’t just noise, and you need to do careful analysis to verify it, but seeing that initial signal was a good indication there was another planet,” Cloutier says.

Cloutier collaborated with an international team of researchers from the Observatoire Astronomique de l’Universite? de Gene?ve, the Institute for research on exoplanets (iREx), Universite? de Grenoble, U of T Scarborough, and Universidade do Porto.

While the newly described planet K2-18c is closer to its star, and probably too hot to be in the habitable zone, like K2-18b it also appears to be a Super-Earth meaning it has a mass similar to Earth. Cloutier, who had set the goal of discovering a new exoplanet within his PhD, considers himself very lucky to have discovered it in this dataset.

“It wasn’t a eureka moment because we still had to go through a checklist of things to do in order to verify the data. Once all the boxes were checked it sunk in that, wow, this actually is a planet.”