Java Earthquake Kills At Least Three People And Damages Buildings

A powerful earthquake that struck the Indonesian island of Java has killed at least three people and caused damage to hundreds of buildings.

People ran into the street in panic in many areas and Indonesian television showed heavy traffic on roads as people fled coastal areas. There were also reports that buildings had collapsed in the city of Tasikmalaya in West Java.

A 62-year-old man in Ciamis and an 80-year-old woman in Pekalongan city were killed when the buildings they were in collapsed, a national disaster mitigation agency spokesman said. A 34-year-old woman from the city of Yogyakarta died when she fell while running out of her house.

Java, Indonesia’s most densely populated island, is home to more than half of the country’s 250 million people.

The US Geological Survey said the epicentre of the magnitude-6.5 quake was located at a depth of 57 miles (92km), about 32 miles south-west of Tasikmalaya.

Indonesia’s national disaster management agency said the quake activated tsunami early warning systems in the south of Java, prompting thousands to evacuate some coastal areas, but no tsunami was detected.

Sutopo Purwo Nugroho, a spokesman for the disaster agency, said in a press briefing on Saturday that three people had been killed, seven injured and hundreds of buildings damaged, including schools, hospitals and government buildings in central and West Java.

Dozens of patients had to be helped to safety from a hospital in Banyumas and were given shelter in tents, he said.

Jakarta resident Web Warouw, 50, was on the 18th floor when the quake struck just before midnight local time (1700 GMT).

“Suddenly, we felt dizzy … We then realised it was a quake and immediately ran downstairs,” Warouw said.

The quake swayed buildings for several seconds in the capital. Some residents of high-rise apartment buildings left their properties.

About 170,000 lives were lost when a 9.1-magnitude quake and tsunami struck Aceh province in December 2004, which also hit coastal areas as far away as Somalia.

Another earthquake struck Aceh in December 2016, killing more than 100 people, injuring many others and leaving tens of thousands homeless.

Geologists In Scotland Discover A 60-Million-Year-Old Meteorite Strike

Geologists exploring volcanic rocks on Scotland’s Isle of Skye found something out-of-this-world instead: ejecta from a previously unknown, 60 million-year-old meteorite impact. The discovery, the first meteorite impact described within the British Paleogene Igneous Province (BPIP), opens questions about the impact and its possible connection to Paleogene volcanic activity across the North Atlantic.

Lead author Simon Drake, an associate lecturer in geology at Birkbeck University of London, zeroed in on a meter-thick layer at the base of a 60.0 million-year-old lava flow. “We thought it was an ignimbrite (a volcanic flow deposit),” says Drake. But when he and colleagues analyzed the rock using an electron microprobe, they discovered that it contained rare minerals straight from outer space: vanadium-rich and niobium-rich osbornite.

These mineral forms have never been reported on Earth. They have, however, been collected by NASA’s Stardust Comet Sample Return Mission as space dust in the wake of the Wild 2 comet. What’s more, the osbornite is unmelted, suggesting that it was an original piece of the meteorite. The team also identified reidite, an extremely high pressure form of zircon which is only ever associated in nature with impacts, along with native iron and other exotic mineralogy linked to impacts such as barringerite.

A second site, seven kilometers away, proved to be a two-meter-thick ejecta layer with the same strange mineralogy. The researchers pin the impact to sometime between 60 million and 61.4 million years ago (Ma), constrained by a 60 Ma radiometric age for the overlying lava flow, and 61.4 Ma for a basalt clast embedded within the ejecta layer. The team published their discovery in Geology this week.

The discovery opens many questions. Is the same ejecta layer found elsewhere in the BPIP? Where exactly did the meteorite hit? Could the impact have triggered the outpouring of lava that began at the same time, or be related to volcanism in the larger North Atlantic Igneous Province? So far, Drake has collected samples from another site on Skye that also yield strange mineralogy, including another mineral strikingly similar to one found in comet dust.

Drake says he was surprised that the ejecta layer had not been identified before. After all, the Isle of Skye is famously well-trampled by geologists. The second site had not been sampled in years. As for the first site, Drake suspects the steep, rough, and very boggy terrain probably discouraged previous workers from sampling the layer. “We were sinking in up to our thighs. I distinctly recall saying to (co-author) Andy Beard, ‘this had better be worth it.'” Now, says Drake, “It was worth it.”

New Discovery Finds Atarving White Dwarfs Are Binge Eaters

University of Canterbury astrophysicist Dr Simone Scaringi has made an unexpected and exciting new discovery related to the way white dwarfs grow in space.

The New Zealand-based researcher and astrophysics lecturer’s co-authored paper, titled “Magnetically gated accretion in an accreting ‘non-magnetic’ white dwarf” has been published in the latest issue of Nature (14 December).

A white dwarf is what stars like the Sun become after they have exhausted their nuclear fuel. White dwarfs are dense objects roughly the same size as Earth but with as much mass as the Sun. They accrete, or grow, by sucking in mass from the outer layers of their companion stars.

Most white dwarfs have long been considered “non-magnetic”. When white dwarfs grow at very low rates, they gain mass in distinct and sudden bursts where they ‘binge eat’ for a short period of time, Dr Scaringi says.

By examining several years of data from the Kepler space-based observatory, a team of international researchers found one of these non-magnetic white dwarfs behaving as if it had a strong magnetic field.

“We have seen episodes of strong flares of accretion interrupted by periods with no evidence of accretion. This sporadic activity is best explained by the presence of a strong magnetic field comparable to that of 1000 fridge magnets,” Dr Scaringi says.

“This magnetic field ‘gates’ the accretion, causing the matter to pile up until it has a gravitational attraction stronger than the magnetic forces holding it back, indicating for the first time that even “non-magnetic” white dwarfs can have very strong magnetic fields.”

The paper’s primary author, Dr Scaringi says this is fundamental research for the field. There have been hints that accretion disks essentially behave in the same way independent of the accretor – whether that is a white dwarf, black hole, neutron star or young proto-star.

“Now we have further evidence that magnetic accretors like the one in our paper also behave in the same way, irrespective of their origin.

“Similar bursts have been observed in accreting neutron stars – which are much smaller and have magnetic fields much higher than our white dwarf – and in young stellar objects, which are on the other end, being much larger and owning much weaker magnetic fields,” he says.

“Our result closes the gap in that our new observations of accretion bursts in MV Lyrae [a peculiar nova-like star consisting of a red dwarf and a white dwarf in Lyra constellation] show the magnetic field strength distribution of systems displaying magnetic gating and underscores the universality of magnetospheric accretion across an enormous range of stellar parameters.”

Artificial Intelligence, NASA Data Used To Discover Eighth Planet Circling Distant Star

Our solar system now is tied for most number of planets around a single star, with the recent discovery of an eighth planet circling Kepler-90, a Sun-like star 2,545 light years from Earth. The planet was discovered in data from NASA’s Kepler Space Telescope.

The newly-discovered Kepler-90i — a sizzling hot, rocky planet that orbits its star once every 14.4 days — was found using machine learning from Google. Machine learning is an approach to artificial intelligence in which computers “learn.” In this case, computers learned to identify planets by finding in Kepler data instances where the telescope recorded changes in starlight caused by planets beyond our solar system, known as exoplanets.

“Just as we expected, there are exciting discoveries lurking in our archived Kepler data, waiting for the right tool or technology to unearth them,” said Paul Hertz, director of NASA’s Astrophysics Division in Washington. “This finding shows that our data will be a treasure trove available to innovative researchers for years to come.”

The discovery came about after researchers Christopher Shallue and Andrew Vanderburg trained a computer to learn how to identify exoplanets in the light readings recorded by Kepler — the miniscule change in brightness captured when a planet passed in front of, or transited, a star. Inspired by the way neurons connect in the human brain, this artificial “neural network” sifted through Kepler data and found weak transit signals from a previously-missed eighth planet orbiting Kepler-90, in the constellation Draco.

Machine learning has previously been used in searches of the Kepler database, and this continuing research demonstrates that neural networks are a promising tool in finding some of the weakest signals of distant worlds.

Other planetary systems probably hold more promise for life than Kepler-90. About 30 percent larger than Earth, Kepler-90i is so close to its star that its average surface temperature is believed to exceed 800 degrees Fahrenheit, on par with Mercury. Its outermost planet, Kepler-90h, orbits at a similar distance to its star as Earth does to the Sun.

“The Kepler-90 star system is like a mini version of our solar system. You have small planets inside and big planets outside, but everything is scrunched in much closer,” said Vanderburg, a NASA Sagan Postdoctoral Fellow and astronomer at the University of Texas at Austin.

Shallue, a senior software engineer with Google’s research team Google AI, came up with the idea to apply a neural network to Kepler data. He became interested in exoplanet discovery after learning that astronomy, like other branches of science, is rapidly being inundated with data as the technology for data collection from space advances.

“In my spare time, I started Googling for ‘finding exoplanets with large data sets’ and found out about the Kepler mission and the huge data set available,” said Shallue. “Machine learning really shines in situations where there is so much data that humans can’t search it for themselves.”

Kepler’s four-year dataset consists of 35,000 possible planetary signals. Automated tests, and sometimes human eyes, are used to verify the most promising signals in the data. However, the weakest signals often are missed using these methods. Shallue and Vanderburg thought there could be more interesting exoplanet discoveries faintly lurking in the data.

First, they trained the neural network to identify transiting exoplanets using a set of 15,000 previously vetted signals from the Kepler exoplanet catalogue. In the test set, the neural network correctly identified true planets and false positives 96 percent of the time. Then, with the neural network having “learned” to detect the pattern of a transiting exoplanet, the researchers directed their model to search for weaker signals in 670 star systems that already had multiple known planets. Their assumption was that multiple-planet systems would be the best places to look for more exoplanets.

“We got lots of false positives of planets, but also potentially more real planets,” said Vanderburg. “It’s like sifting through rocks to find jewels. If you have a finer sieve then you will catch more rocks but you might catch more jewels, as well.”

Kepler-90i wasn’t the only jewel this neural network sifted out. In the Kepler-80 system, they found a sixth planet. This one, the Earth-sized Kepler-80g, and four of its neighboring planets form what is called a resonant chain — where planets are locked by their mutual gravity in a rhythmic orbital dance. The result is an extremely stable system, similar to the seven planets in the TRAPPIST-1 system.

Their research paper reporting these findings has been accepted for publication in The Astronomical Journal. Shallue and Vanderburg plan to apply their neural network to Kepler’s full set of more than 150,000 stars.

Kepler has produced an unprecedented data set for exoplanet hunting. After gazing at one patch of space for four years, the spacecraft now is operating on an extended mission and switches its field of view every 80 days.

“These results demonstrate the enduring value of Kepler’s mission,” said Jessie Dotson, Kepler’s project scientist at NASA’s Ames Research Center in California’s Silicon Valley. “New ways of looking at the data — such as this early-stage research to apply machine learning algorithms — promise to continue to yield significant advances in our understanding of planetary systems around other stars. I’m sure there are more firsts in the data waiting for people to find them.”

Ames manages the Kepler and K2 missions for NASA’s Science Mission Directorate in Washington. NASA’s Jet Propulsion Laboratory in Pasadena, California, managed Kepler mission development. Ball Aerospace & Technologies Corporation operates the flight system with support from the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder. This work was performed through the Carl Sagan Postdoctoral Fellowship Program executed by the NASA Exoplanet Science Institute.

A Better Way To Weigh Millions Of Solitary Stars

Astronomers have come up with a new and improved method for measuring the masses of millions of solitary stars, especially those with planetary systems.

Getting accurate measurements of how much stars weigh not only plays a crucial role in understanding how stars are born, evolve and die, but it is also essential in assessing the true nature of the thousands of exoplanets now known to orbit most other stars.

The method is tailor-made for the European Space Agency’s Gaia Mission, which is in the process of mapping the Milky Way galaxy in three dimensions, and NASA’s upcoming Transiting Exoplanet Survey Satellite (TESS), which is scheduled for launch next year and will survey the 200,000 brightest stars in the firmament looking for alien earths.

“We have developed a novel method for ‘weighing’ solitary stars,” said Stevenson Professor of Physics and Astronomy Keivan Stassun, who directed the development. “First, we use the total light from the star and its parallax to infer its diameter. Next, we analyze the way in which the light from the star flickers, which provides us with a measure of its surface gravity. Then we combine the two to get the star’s total mass.”

Stassun and his colleagues—Enrico Corsaro from INAF-Osservatorio Astrofisico di Catania in Italy, Joshua Pepper from Leigh University and Scott Gaudi from Ohio State University—describe the method and demonstrate its accuracy using 675 stars of known mass in an article titled “Empirical, accurate masses and radii of single stars with TESS and GAIA” accepted for publication in the Astronomical Journal.

Traditionally, the most accurate method for determining the mass of distant stars is to measure the orbits of double star systems, called binaries. Newton’s laws of motion allow astronomers to calculate the masses of both stars by measuring their orbits with considerable accuracy. However, fewer than half of the star systems in the galaxy are binaries, and binaries make up only about one-fifth of red dwarf stars that have become prized hunting grounds for exoplanets, so astronomers have come up with a variety of other methods for estimating the masses of solitary stars. The photometric method that classifies stars by color and brightness is the most general, but it isn’t very accurate. Asteroseismology, which measures light fluctuations caused by sound pulses that travel through a star’s interior, is highly accurate but only works on several thousand of the closest, brightest stars.

“Our method can measure the mass of a large number of stars with an accuracy of 10 to 25 percent. In most cases, this is far more accurate than is possible with other available methods, and importantly it can be applied to solitary stars so we aren’t limited to binaries,” Stassun said.

The technique is an extension of an approach that Stassun developed four years ago with graduate student Fabienne Bastien, who is now an assistant professor at Pennsylvania State University. Using special data visualization software developed by a neuro-diverse team of Vanderbilt astronomers, Bastein discovered a subtle flicker pattern in starlight that contains valuable information about a star’s surface gravity.

Last year, Stassun and his collaborators developed an empirical method for determining the diameter of stars using published star catalog data. It involves combining information on a star’s luminosity and temperature with Gaia Mission parallax data. (The parallax effect is the apparent displacement of an object caused by a change in the observer’s point of view.)

“By putting together these two techniques, we have shown that we can estimate the mass of stars catalogued by NASA’s Kepler mission with an accuracy of about 25 percent and we estimate that it will provide an accuracy of about 10 percent for the types of stars that the TESS mission will be targeting,” said Stassun.

Establishing the mass of a star that possesses a planetary system is a critical factor in determining the mass and size of the planets circling it. An error of 100 percent in the estimate of the mass of a star, which is typical using the photometric method, can result in an error of as much as 67 percent in calculating the mass of its planets. This is roughly equivalent to the difference between a Mercury and an Earth. So, it is extremely important in properly assessing the nature of all the alien worlds that astronomers have begun detecting in recent years.

Dark Energy Survey Offers New View Of Dark Matter Halos, Physicists Report

Dark matter, a mysterious form of matter that makes up about 80 percent of the mass of the universe, has evaded detection for decades. Although it doesn’t interact with light, scientists believe it’s there because of its influence on galaxies and galaxy clusters.

It extends far beyond the reach of the furthest stars in galaxies, forming what scientists call a dark matter halo. While stars within the galaxy rotate in a neat, organized disk, these dark matter particles are like a swarm of bees, moving chaotically in random directions, which keeps them puffed up to balance the inward pull of gravity.

Previous research led by postdoctoral fellow Eric Baxter; Bhuvnesh Jain, Walter H. and Leonore C. Annenberg Professor in the Natural Sciences in the Department of Physics and Astronomy in Penn’s School of Arts and Sciences; and Chihway Chang of the University of Chicago provided evidence that dark matter halos around galaxy clusters have an edge due to the “splashback effect.”

“You have this big dark matter halo that surrounds every galaxy cluster,” Baxter said, “and it’s been accreting matter gravitationally over its entire history. As that matter gets pulled in, it goes faster and faster. When it finally falls into the halo, it turns around and starts to orbit. That turnaround is what people have started calling splashback, because stuff is splashing back in some sense.”

As the matter “splashes back,” it slows down. Because this effect is happening in many different directions, it leads to a buildup of matter right at the edge of the halo and a steep fall-off in the amount of matter right outside of that position.

In their initial study, the researchers used data from the Sloan Digital Sky Survey to investigate the distribution of galaxies around clusters. In a follow up study using data from the first year of the Dark Energy Survey, the researchers used a different method called gravitational lensing, which takes advantage of a phenomenon in which light coming toward an observer bends as matter exerts gravitational force on it. By looking at the slight stretching of objects behind galaxies, the researchers can directly measure the mass profile, how mass is distributed within the galaxy.

“There are many different applications of lensing,” Jain said, “but this is one where something went from being undetectable to detectable, so it’s particularly exciting.”

In a paper to be published in the Astrophysical Journal, the researchers showed that this method produced an understanding of the dark matter halos that is broadly consistent with what they saw using the light of the cluster galaxies in their first study.

“We were pursuing this question of whether dark matter halos have a sharp boundary,” Jain said. “The gold standard for establishing this is to look directly at the mass through gravitational lensing, which hasn’t been done before now. With the latest compilation of DES data we see a picture very similar to what we saw in the distribution of galaxies.”

Measuring gravitational lensing is a lot harder than simply measuring the distribution of galaxies, Jain said.

“We can see galaxies easily, we just take a picture of them,” he said, “but with gravitational lensing we have to take pictures of many more faint, background galaxies and measure how those are distorted in tiny ways. It’s a challenging measurement.”

This leaves more room for error in the measurements, causing them to be less precise. However, the findings were only based on the first year of observations of the Dark Energy Survey. By the end of the survey, there will be four additional years of data for the researchers to analyze. This will allow them to make more precise measurements, directly probing the matter in galaxies and galaxy clusters using gravitational lensing. Tests of dark matter will then be possible, since any new physical interactions between dark matter particles could shift the location of splashback.

“We can look forward to a clearer picture of mysterious dark matter halos,” Jain said.

JUST IN: Scientists Seem To Be Very Interested In Cosmic Rays

There is a great deal of interest in galactic cosmic rays coming from our best space agencies and top universities. As evidenced by several recently published studies, the interest is in the relatively new understanding associated with the paradoxical effect between solar minimum and cosmic ray acceleration.

A second focused interest is the physical effects of higher rates of radiation on humans and animals. Commercial airlines are flying at lower altitudes, and pilots and flight attendants have reduced their number of long flights as well as over polar region flights.

A closer watch has been placed on the Earth’s weakening magnetic field, which of course has always been our greatest defense against charged particles. I think it also important to highlight the ongoing interest and new studies on transcranial magnetic stimulation and its effect on the brain, much of which is related to emotions.

Is it time to go underground? Should we bring out the aluminum hats and umbrellas? No, not yet anyway. I would suggest this generation and the next is not likely to be burdened with such things, but perhaps a hundred years from now there may be inter-planetary travel.

Coming in next newsletter, I will be placing perhaps five or so of the latest published studies for you to perhaps grasp and contemplate on this fascinating direction of research. Not just from looking into the future, but looking into the past.

Then of course, there will be a few of you already have an understanding of this science of cycles. Perhaps you may have even found a source who has produced the inside story on how this puzzle plays out – maybe even since 2012 :-).

Cheers, Mitch