Extreme Turbulence Roiling ‘Most Luminous Galaxy’ In The Universe

The most luminous galaxy in the Universe — a so-called obscured quasar 12.4 billion light-years away — is so violently turbulent that it may eventually jettison its entire supply of star-forming gas, according to new observations with the Atacama Large Millimeter/submillimeter Array (ALMA).


A team of researchers used ALMA to trace, for the first time, the actual motion of the galaxy’s interstellar medium — the gas and dust between the stars. What they found, according to Tanio Díaz-Santos of the Universidad Diego Portales in Santiago, Chile, is a galaxy “so chaotic that it is ripping itself apart.”

Previous studies with NASA’s Wide-field Infrared Survey Explorer (WISE) spacecraft revealed that the galaxy, dubbed W2246-0526, is glowing in infrared light as intensely as approximately 350 trillion suns.

Evidence strongly suggests that this galaxy is an obscured quasar, a very distant galaxy with a voraciously feeding supermassive black hole at its center that is completely obscured behind a thick blanket of dust.

This galaxy’s startling brightness is powered by a tiny, yet incredibly energetic disk of gas that is being superheated as it spirals in on the supermassive black hole. The light from this blazingly bright accretion disk is then absorbed by the surrounding dust, which re-emits the energy as infrared light.

“These properties make this object a beast in the infrared,” said Roberto Assef, an astronomer with the Universidad Diego Portales and leader of the ALMA observing team. “The powerful infrared energy emitted by the dust then has a direct and violent impact on the entire galaxy, producing extreme turbulence throughout the interstellar medium.”

The astronomers compare this turbulent action to a pot of boiling water. If these conditions continue, they say, the galaxy’s intense infrared radiation will boil away all of its interstellar gas.

This galaxy belongs to a very unusual type of quasar known as Hot, Dust-Obscured Galaxies or Hot DOGs. These objects are very rare; only 1 out of every 3,000 quasars observed by WISE belongs to this class.

The astronomers used ALMA to precisely map the motion of ionized carbon atoms throughout the entire galaxy. These atoms, which are tracers for interstellar gas, naturally emit infrared light, which becomes shifted to millimeter wavelengths as it travels the vast cosmic distances to Earth due to the expansion of the Universe.

“Large amounts of ionized carbon were found in an extremely turbulent dynamic state throughout the galaxy,” Díaz-Santos describes. The data reveal that this interstellar material is careening anywhere from 500 to 600 kilometers per second throughout the entire galaxy.

The astronomers believe that this turbulence is primarily due to the fact that the region around the black hole is at least 100 times more luminous than the rest of the galaxy combined; in other quasars, the proportion is much more modest. This intense yet localized radiation exerts tremendous pressure on the entire galaxy, to potentially devastating effect.

“We suspected that this galaxy was in a transformative stage of its life because of the enormous amount of infrared energy discovered with WISE,” said Peter Eisenhardt with NASA’s Jet Propulsion Laboratory in Pasadena, Calif. “Now ALMA has shown us that the raging furnace in this galaxy is making the pot boil over.”

Current models of galactic dynamics combined with the ALMA data indicate that this galaxy is unstable and its interstellar gas is being blown away in all directions. This suggests that the galaxy’s Hot DOG days are numbered as it matures into a more traditional unobscured quasar.

“If this pattern continues, it is possible that in the future W2246 ends up shedding a large part of the gas and dust it contains,” concludes Manuel Aravena also from the Universidad Diego Portales. “Only ALMA, with its unparalleled resolution, can allow us to see this object in high definition and fathom such an important episode in the life of this galaxy.”

Astronomers Studying What May Be The Most Powerful Supernova Ever Seen

Right now, astronomers are viewing a ball of hot gas billions of light years away that is radiating the energy of hundreds of billions of suns. At its heart is an object a little larger than 10 miles across.


And astronomers are not entirely sure what it is.

If, as they suspect, the gas ball is the result of a supernova, then it’s the most powerful supernova ever seen.

In this week’s issue of the journal Science, they report that the object at the center could be a very rare type of star called a magnetar–but one so powerful that it pushes the energy limits allowed by physics.

An international team of professional and amateur astronomers spotted the possible supernova, now called ASASSN-15lh, when it first flared to life in June 2015.

Even in a discipline that regularly uses gigantic numbers to express size or distance, the case of this small but powerful mystery object in the center of the gas ball is so extreme that the team’s co-principal investigator, Krzysztof Stanek of The Ohio State University, turned to the movie This is Spinal Tap to find a way to describe it.

“If it really is a magnetar, it’s as if nature took everything we know about magnetars and turned it up to 11,” Stanek said. (For those not familiar with the comedy, the statement basically translates to “11 on a scale of 1 to 10.”)

The gas ball surrounding the object can’t be seen with the naked eye, because it’s 3.8 billion light years away. But it was spotted by the All Sky Automated Survey for Supernovae (ASAS-SN, pronounced “assassin”) collaboration. Led by Ohio State, the project uses a cadre of small telescopes around the world to detect bright objects in our local universe.

Though ASAS-SN has discovered some 250 supernovae since the collaboration began in 2014, the explosion that powered ASASSN-15lh stands out for its sheer magnitude. It is 200 times more powerful than the average supernova, 570 billion times brighter than our sun, and 20 times brighter than all the stars in our Milky Way Galaxy combined.

“We have to ask, how is that even possible?” said Stanek, professor of astronomy at Ohio State. “It takes a lot of energy to shine that bright, and that energy has to come from somewhere.”

“The honest answer is at this point that we do not know what could be the power source for ASASSN-15lh,” said Subo Dong, lead author of the Science paper and a Youth Qianren Research Professor of astronomy at the Kavli Institute for Astronomy and Astrophysics at Peking University.

He added that the discovery “may lead to new thinking and new observations of the whole class of superluminous supernova.”

Todd Thompson, professor of astronomy at Ohio State, offered one possible explanation. The supernova could have spawned an extremely rare type of star called a millisecond magnetar, a rapidly spinning and very dense star with a very strong magnetic field.

To shine so bright, this particular magnetar would also have to spin at least 1,000 times a second, and convert all that rotational energy to light with nearly 100 percent efficiency, Thompson explained. It would be the most extreme example of a magnetar that scientists believe to be physically possible.

“Given those constraints,” he said, “will we ever see anything more luminous than this? If it truly is a magnetar, then the answer is basically no.”

The Hubble Space Telescope will help settle the question later this year, in part because it will allow astronomers to see the host galaxy surrounding the object. If the team finds that the object lies in the very center of a large galaxy, then perhaps it’s not a magnetar at all, and the gas around it is not evidence of a supernova, but instead some unusual nuclear activity around a supermassive black hole.

If so, then its bright light could herald a completely new kind of event, said study co-author Christopher Kochanek, professor of astronomy at Ohio State and the Ohio Eminent Scholar in Observational Cosmology. It would be something never before seen in the center of a galaxy.

Ohio State co-authors on the study include John Beacom, professor of physics and astronomy and director of the university’s Center for Cosmology and Astro-Particle Physics (CCAPP); graduate students Thomas Holoien, Jonathan Brown, A. Bianca Danilet and Gregory Simonian; and Ohio State alumni Ben Shappee, now at the Carnegie Observatories, and Jose Prieto, now at the Universidad Diego Portales and Millennium Institute of Astrophysics.

Other co-authors, including both professional and amateur astronomers, hail from Rutgers University, Las Campanas Observatory, Liverpool John Moores University, Coral Towers Observatory, Osservatorio Astrofisico di Catania, Observatoire de Strasbourg, Harvard-Smithsonian Center for Astrophysics, Morehead State University, Variable Star Observers League in Japan, The Virtual Telescope Project, Mt. Vernon Observatory, Universidad Andres Bello, Warsaw University and Los Alamos National Laboratory.

This work is primarily funded by the National Science Foundation and CCAPP. Additional support came from the Mt. Cuba Astronomical Foundation and private donations from retired Homewood Corp. CEO George Skestos and the Robert Martin Ayers Sciences Fund. ASAS-SN telescopes are hosted by the Las Cumbres Observatory Global Telescope Network.

New theory of secondary inflation expands options for avoiding an excess of dark matter

Standard cosmology — that is, the Big Bang Theory with its early period of exponential growth known as inflation — is the prevailing scientific model for our universe, in which the entirety of space and time ballooned out from a very hot, very dense point into a homogeneous and ever-expanding vastness. This theory accounts for many of the physical phenomena we observe. But what if that’s not all there was to it?

dark matter

A new theory from physicists at the U.S. Department of Energy’s Brookhaven National Laboratory, Fermi National Accelerator Laboratory, and Stony Brook University, which will publish online on January 18 in Physical Review Letters, suggests a shorter secondary inflationary period that could account for the amount of dark matter estimated to exist throughout the cosmos.

“In general, a fundamental theory of nature can explain certain phenomena, but it may not always end up giving you the right amount of dark matter,” said Hooman Davoudiasl, group leader in the High-Energy Theory Group at Brookhaven National Laboratory and an author on the paper. “If you come up with too little dark matter, you can suggest another source, but having too much is a problem.”

Measuring the amount of dark matter in the universe is no easy task. It is dark after all, so it doesn’t interact in any significant way with ordinary matter. Nonetheless, gravitational effects of dark matter give scientists a good idea of how much of it is out there. The best estimates indicate that it makes up about a quarter of the mass-energy budget of the universe, while ordinary matter — which makes up the stars, our planet, and us — comprises just 5 percent. Dark matter is the dominant form of substance in the universe, which leads physicists to devise theories and experiments to explore its properties and understand how it originated.

Some theories that elegantly explain perplexing oddities in physics — for example, the inordinate weakness of gravity compared to other fundamental interactions such as the electromagnetic, strong nuclear, and weak nuclear forces — cannot be fully accepted because they predict more dark matter than empirical observations can support.

This new theory solves that problem. Davoudiasl and his colleagues add a step to the commonly accepted events at the inception of space and time.

In standard cosmology, the exponential expansion of the universe called cosmic inflation began perhaps as early as 10-35 seconds after the beginning of time — that’s a decimal point followed by 34 zeros before a 1. This explosive expansion of the entirety of space lasted mere fractions of a fraction of a second, eventually leading to a hot universe, followed by a cooling period that has continued until the present day. Then, when the universe was just seconds to minutes old — that is, cool enough — the formation of the lighter elements began. Between those milestones, there may have been other inflationary interludes, said Davoudiasl.

“They wouldn’t have been as grand or as violent as the initial one, but they could account for a dilution of dark matter,” he said.

In the beginning, when temperatures soared past billions of degrees in a relatively small volume of space, dark matter particles could run into each other and annihilate upon contact, transferring their energy into standard constituents of matter-particles like electrons and quarks. But as the universe continued to expand and cool, dark matter particles encountered one another far less often, and the annihilation rate couldn’t keep up with the expansion rate.

“At this point, the abundance of dark matter is now baked in the cake,” said Davoudiasl. “Remember, dark matter interacts very weakly. So, a significant annihilation rate cannot persist at lower temperatures. Self-annihilation of dark matter becomes inefficient quite early, and the amount of dark matter particles is frozen.”

However, the weaker the dark matter interactions, that is, the less efficient the annihilation, the higher the final abundance of dark matter particles would be. As experiments place ever more stringent constraints on the strength of dark matter interactions, there are some current theories that end up overestimating the quantity of dark matter in the universe. To bring theory into alignment with observations, Davoudiasl and his colleagues suggest that another inflationary period took place, powered by interactions in a “hidden sector” of physics. This second, milder, period of inflation, characterized by a rapid increase in volume, would dilute primordial particle abundances, potentially leaving the universe with the density of dark matter we observe today.

“It’s definitely not the standard cosmology, but you have to accept that the universe may not be governed by things in the standard way that we thought,” he said. “But we didn’t need to construct something complicated. We show how a simple model can achieve this short amount of inflation in the early universe and account for the amount of dark matter we believe is out there.”

Proving the theory is another thing entirely. Davoudiasl said there may be a way to look for at least the very feeblest of interactions between the hidden sector and ordinary matter.

“If this secondary inflationary period happened, it could be characterized by energies within the reach of experiments at accelerators such as the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider,” he said. Only time will tell if signs of a hidden sector show up in collisions within these colliders, or in other experimental facilities.

6.7 Magnitude Quake Hits India’s Northeast

A 6.7 magnitude earthquake hit India’s remote northeast region before dawn on Monday, killing at least four people, injuring more than 100 others and causing damage to several buildings.


The death and injuries were caused by falling debris in and around Imphal, the capital of Manipur state, police said.

The powerful tremor left large cracks in walls and a portion of a popular market building collapsed in the state capital. The area is dotted with small houses. There are few tall buildings in the region, although a newly constructed six-story building collapsed in Imphal, the police control room said.

India’s Meteorological Department said the epicenter of the quake was in Tamenglong region of Manipur state. It struck before dawn on Monday at a depth of 17 kilometers (about 10 miles) in the India-Myanmar border region.

Police officer L. Ragui said dozens of homes were slightly damaged in Tamenglong.

No deaths had been reported so far, but four people suffered injuries when a wall collapsed on them, Ragui said by the telephone.

Shangthon Kamei, a teacher in Tamenglong, said the earthquake rattled buildings.

“It lasted for around one minute. We were sleeping and were woken up by the earthquake,” he said.

Telephone and electricity connections were disrupted in some areas.

The epicenter of the earthquake was 35 kilometers (20 miles) northwest of Imphal. The area is remote with poor cellphone and Internet connections, and information about conditions outside of major cities may take time to emerge.

Nearly 90 members of the National Disaster Response Force, a specialized federal force for natural disasters, have left to check on remote areas, police said.

People panicked and rushed out of their homes in Gauhati, the capital of neighboring Assam state, as they felt massive shaking at least twice within 60 seconds.

In Imphal, residents said furniture was knocked over and books fell off shelves.

“The ground swayed for almost a minute, jolting people awake in their homes,” said one resident, Apem Arthur.

The tremors were also felt in Kolkata, the capital of West Bengal state.