New Study Highlights Mantle Plumes and Yellowstone Supervolcano

In a new study, reported in the journal Nature Geosciences, University of Illinois geologists, Lijun Liu and graduate students Quan Zhou and Jiashun Hu used a technique called seismic tomography to peer deep into the subsurface of the western U.S. and piece together the geologic history behind the volcanism. Using supercomputers, the team ran different tectonic scenarios to observe a range of possible geologic histories for the western U.S. over the past 20 million years. The effort yielded little support for the traditional mantle plume hypothesis.

Recent stories in the national media are magnifying fears of a catastrophic eruption of the Yellowstone volcanic area, but scientists remain uncertain about the likelihood of such an event. To better understand the region’s subsurface geology, Uof I geologists have rewound and played back a portion of its geologic history, finding that Yellowstone volcanism is more far more complex and dynamic than previously thought.

“The heat needed to drive volcanism usually occurs in areas where tectonic plates meet and one slab of crust slides, or subducts, under another. However, Yellowstone and other volcanic areas of the inland western U.S. are far away from the active plate boundaries along the west coast,” said Liu who led the new research. “In these inland cases, a deep-seated heat source known as a mantle plume is suspected of driving crustal melting and surface volcanism.”

The teams goal is to develop a model that matches up with what they see both below ground and on the surface today. “We call it a hybrid geodynamic model because most of the earlier models either start with an initial condition and move forward, or start with the current conditions and move backward. Our model does both, which gives us more control over the relevant mantle processes” says graduate students Quan Zhou.

One of the many variables the team entered into their model was heat. Hot subsurface material – like that in a mantle plume – should rise vertically toward the surface, but that was not what the researchers saw in their models.

“It appears that the mantle plume under the western U.S. is sinking deeper into the Earth through time, which seems counterintuitive,” Liu said. “This suggests that something closer to the surface such as an oceanic slab originating from the western tectonic boundary – is interfering with the rise of the plume.”

As for likelihood of a violent demise of Yellowstone occurring anytime soon, the researchers say it is still too early to know. “Perhaps more importantly, this work will give us a better understanding of some of the mysterious processes deep within the Earth, which will help us better understand the consequences of plate tectonics, including the mechanism of Earthquakes and volcanoes.”

Author: Mitch Battros

Mitch Battros is a scientific journalist who is highly respected in both the scientific and spiritual communities due to his unique ability to bridge the gap between modern science and ancient text. Founded in 1995 – Earth Changes TV was born with Battros as its creator and chief editor for his syndicated television show. In 2003, he switched to a weekly radio show as Earth Changes Media. ECM quickly found its way in becoming a top source for news and discoveries in the scientific fields of astrophysics, space weather, earth science, and ancient text. Seeing the need to venture beyond the Sun-Earth connection, in 2016 Battros advanced his studies which incorporates our galaxy Milky Way – and its seemingly rhythmic cycles directly connected to our Solar System, Sun, and Earth driven by the source of charged particles such as galactic cosmic rays, gamma rays, and solar rays. Now, “Science Of Cycles” is the vehicle which brings the latest cutting-edge discoveries confirming his published Equation.