NEW STUDY: Can We Protect the Brain From Cosmic Radiation?

Although this new study is focused space travel and the damage cosmic rays can impose on the human brain, it is important to reflect upon the current trend of a diminishing strength of Earth’s magnetic field allowing a significant increase of cosmic rays.

Another factor is the predicted lessening of solar cycle strengths – perhaps over the next 100 years. When there is a lower number of sunspots, there will be fewer solar storms such as solar flares, coronal mass ejections, and coronal holes. It is the stronger solar winds which deflect galactic cosmic rays. There is a considerable scientific argument which propose cosmic ray radiation is more harmful to Earth and humans than solar storm events.

As we prepare to enter a new era of space travel, we must find ways of averting health risks posed by the cosmic environment. Deep space radiation, in particular, is known to impair cognitive function. Have researchers found a way to undo that damage?

This is the eve of sending astronauts to explore deep space, colonizing and terraforming other planets, and planning for space tourism. One main threat comes from cosmic radiation, which can harm the central nervous system, altering cognitive function and leading to symptoms similar to those found in Alzheimer’s disease.

With their colonizing missions to Mars planned for as soon as the 2030s, NASA – as well as private companies interested in space travel concepts – have been looking into effective ways of protecting astronauts from the harms of radiation.

So far, researchers have focused mainly on how to enhance spacecrafts and protective outfits for outer space travelers to fend off this strong radiation. Now, however, investigators from the University of California, San Francisco – led by Susanna Rosi – have started developing a treatment that might offset the neuro-degeneration triggered by cosmic rays.

The results of their experiments, which they carried out on mouse models, are now published in the journal Scientific Reports.

_______________

Science Of Cycles Research and
News Service Fund Raiser

As with all community services, it is time to request support with our services. We are hopeful to keep our research and news services available to all who seek this knowledge.

Needless to say we are convinced what we provide on Science Of Cycles informs its readers to be best informed of what is occurring right now in the present, but as importantly, what is most likely to occur in the near future.

Cheers, Mitch

 

BREAKING NEWS: Scientists to Determine Recent Supernovae Responsible for Earth’s Previous Mass Extinction

Dr Brian Thomas, an astrophysicist at Washburn University in Kansas, USA, modeled the biological impacts at the Earth’s surface, based on geologic evidence of nearby supernovae 2.5 million and 8 million years ago. In his latest paper, Thomas investigated cosmic rays from the supernovae as they propagated through our atmosphere to the surface, to understand their effect on living organisms.

How would a nearby supernova affect life on Earth? Thomas laments that supernovae often are exemplified as “supernova goes off and everything dies”, but that is not quite the case. The answer lies in the atmosphere. Beyond sunscreen, the ozone layer protects all biology from harmful, genetically altering ultraviolet (UV) radiation. Thomas used global climate models, recent atmospheric chemistry models and radiative transfer (the propagation of radiation through the layers of the atmosphere) to better understand how the flux of cosmic rays from supernovae would alter Earth’s atmosphere, specifically the ozone layer.

One thing to note is that cosmic rays from supernovae would not blast everything in their paths all at once. The intergalactic medium acts as a kind of sieve, slowing down the arrival of cosmic rays and “radioactive iron rain” (60Fe) over hundreds of thousands of years, Thomas tells Astrobiology Magazine. Higher energetic particles will reach Earth first and interact with our atmosphere differently than lower energy particles arriving later. Thomas’s study modeled the depletion in ozone 100, 300, and 1,000 years after the initial particles from a supernova began penetrating our atmosphere. Interestingly, depletion peaked (at roughly 26 percent) for the 300-year case, beating out the 100-year case.

The high-energy cosmic rays in the 100-year case would zip right through the stratosphere and deposit their energy below the ozone layer, depleting it less, while the less energetic cosmic rays arriving during the 300-year interval would deposit more energy in the stratosphere, depleting ozone significantly.

A decrease in ozone could be a concern for life on the surface. “This work is an important step towards understanding the impact of nearby supernovae on our biosphere,” says Dr Dimitra Atri, a computational physicist at the Blue Marble Space Institute of Science in Seattle, USA.

Thomas examined several possible biologically-damaging effects (erythema, skin cancer, cataracts, marine phytoplankton photosynthesis inhibition and plant damage) at different latitudes as a result of increased UV radiation resulting from a depleted ozone layer. They showed heightened damage across the board, generally increasing with latitude, which makes sense given the changes we see in the fossil record. However, the effects aren’t equally detrimental to all organisms. Plankton, the primary producers of oxygen, seemed to be minimally affected. The results also suggested a small increase in the risk of sunburn and skin cancer among humans.

So, do nearby supernovae result in mass extinctions? It depends, says Thomas. “There is a subtler shift; instead of a ‘wipe-out everything’, some [organisms] are better off and some are worse off.” For example some plants showed increase yield, like soybean and wheat, while other plants showed reduced productivity.  “It fits,” Thomas states, referring to the change in species in the fossil record.

In the future, Thomas hopes to expand on this work and examine possible linkages between human evolution and supernovae.

_______________

Science Of Cycles Research Fund

Your assistance has always been at the core of this model, without you we fail. Below is an example of how Science Of Cycles keeps you tuned in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living. We are maintaining our open ended donation so you can place amount of your choice.   Cheers, Mitch

 

JUST IN: New NASA Mission Explores ‘Cosmic Rain’

A new experiment set for an Aug. 14 launch to the International Space Station will provide an unprecedented look at a rain of particles from deep space, called cosmic rays, that constantly showers our planet. The Cosmic Ray Energetics And Mass mission destined for the International Space Station (ISS-CREAM) is designed to measure the highest-energy particles of any detector yet flown in space.

Cosmic Ray Energetics And Mass

The ISS-CREAM experiment will be delivered to the space station as part of the 12th SpaceX commercial resupply service mission. Once there, ISS-CREAM will be moved to the Exposed Facility platform extending from Kibo, the Japanese Experiment Module. “High-energy cosmic rays carry a great deal of information about our interstellar neighborhood and our galaxy, but we haven’t been able to read these messages very clearly,” said co-investigator John Mitchell at Goddard. “ISS-CREAM represents one significant step in this direction.”

At energies above about 1 billion electron volts, most cosmic rays come to us from beyond our solar system. Various lines of evidence, including observations from NASA’s Fermi Gamma-ray Space Telescope, support the idea that shock waves from the expanding debris of stars that exploded as supernovas accelerate cosmic rays up to energies of 1,000 trillion electron volts (PeV). That’s 10 million times the energy of medical proton beams used to treat cancer. ISS-CREAM data will allow scientists to examine how sources other than supernova remnants contribute to the population of cosmic rays.

Protons are the most common cosmic ray particles, but electrons, helium nuclei and the nuclei of heavier elements make up a small percentage. All are direct samples of matter from interstellar space. But because the particles are electrically charged, they interact with galactic magnetic fields, causing them to wander in their journey to Earth. This scrambles their paths and makes it impossible to trace cosmic ray particles back to their sources.

JUST IN: New Study Affirms Mantle Plumes Source of Heated Surface

As outlined in my article Cosmic Ray Penetration More Prevalent Than Realized, a new study published July 27th in the journal ‘Science’, identifies mantle plumes – viscous molten rock coming from the Earth’s outer core – as the source heated surfaces which include volcanoes and ocean bottom fissures.

For more than 2 decades, scientists have pondered the nature of these mysterious regions, sometimes called Ultra Low Velocity Zones (ULVZs). Researchers examining one below Iceland at a depth of nearly 3000 kilometers, now have their answer. This discovery shows molten plumes that shoot out as roots of hot rock that slowly rise through the mantle to feeding a system of volcanoes and fissures.

Earth scientists have long suspected that upwellings in these mantle convection currents would manifest themselves as the plumes responsible for Earth’s volcanic hot spots. Now we have started to see them with sophisticated computer models that use the waves from large earthquakes to create CT scan–like tomographic pictures of Earth’s interior; says Barbara Romanowicz, a seismologist at the University of California, Berkeley, and led author of the study.

Thank you for your continued support. We’re now about half way there.

Coming Next: History of War and Quakes

New Study Indicates Many Scientists Clueless to Cause of Climate Cycles

Now, two first-of-their-kind studies provide new insight into the deep history of the Greenland Ice Sheet, looking back millions of years farther than previous techniques allowed. However, the two studies present some strongly contrasting evidence about how Greenland‘s ice sheet may have responded to past climate change – bringing new urgency to the need to understand if and how the giant ice sheet might dramatically accelerate its melt-off in the near future.

green_vs_greem_scienceofcycles

The two new studies were published in the journal Nature on December 8, including one led by University of Vermont geologist Paul Bierman. The other led by Joerg Schaefer of Lamont-Doherty Earth Observatory and Columbia University.

Bierman and four colleagues – from UVM, Boston College, Lawrence Livermore Laboratory, and Imperial College London – studied deep cores of ocean-bottom mud containing bits of bedrock that eroded off of the east side of Greenland. Their results show that East Greenland has been actively scoured by glacial ice for much of the last 7.5 million years – and indicate that the ice sheet on this eastern flank of the island has not completely melted for long, if at all, in the past several million years. This result is consistent with existing computer models. Since the data the team collected only came from samples off the east side of Greenland, their results do not provide a definitive picture of the Greenland ice sheet.

artic-ice-growth

The other study in Nature – led by Joerg Schaefer of Lamont-Doherty Earth Observatory and Columbia University, and colleagues – looked at a small sample of bedrock from one location beneath the middle of the existing ice sheet and came to what appears to be a different conclusion: Greenland was nearly ice-free for at least 280,000 years during the middle Pleistocene – about 1.1 million years ago. This possibility is in contrast to existing computer models.

“These results appear to be contradictory” UVM’s Bierman says. He notes that both studies have “some blurriness,” he says, in what they are able to resolve about short-term changes and the size of the ancient ice sheet. “Their study is a bit like one needle in a haystack,” he says, “and ours is like having the whole haystack, but not being sure how big it is.”

Both Studies Analyze Cosmic Ray Bombardment in Bedrock

_cosmic_rays_earth_m

Both teams of scientists used, “a powerful new tool for Earth scientists,” says Dylan Rood, a scientist at Imperial College London and a co-author on the Bierman-led study: isotopes within grains of quartz, produced when bedrock is bombarded by cosmic rays from space. The isotopes come into being when rock is at or near Earth’s surface – but not when it’s buried under an overlying ice sheet. By looking at the ratio of two of these cosmic-ray-made elements – aluminum-26 and beryllium-10 caught in crystals of quartz, and measured in an accelerator mass spectrometer – the scientists were able to calculate how long the rocks in their samples had been exposed to the sky versus covered by ice.

UPDATE: New Study Suggest Cosmic Ray Origin Now Include ‘Dark Matter’

Observing the constant rain of cosmic rays hitting Earth can provide information on the “magnetic weather” in other parts of the Galaxy. A new high-precision measurement of two cosmic-ray elements, boron and carbon, supports a specific model of the magnetic turbulence that deflects cosmic rays on their journey through the Galaxy.

dark-matter3-science-of-cycles

The data, which come from the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station, appear to rule out alternative models for cosmic-ray propagation. By ruling out these models, the AMS results support the alternative explanation – a new primary cosmic ray source that emits positrons. Candidates include pulsars and dark matter, but a lot of mystery still surrounds the unexplained positron data.

The majority of cosmic rays are particles or nuclei produced in supernovae or other astrophysical sources. However, as these so-called primary cosmic rays travel through the Galaxy to Earth, they collide with gas atoms in the interstellar medium. The collisions produce a secondary class of cosmic rays with masses and energies that differ from primary cosmic rays.

interstellar-collision-science_of_cycles

To investigate the relationship of the two classes, astrophysicists often look at the ratio of the number of detection’s of two nuclei, such as boron and carbon. For the most part, carbon cosmic rays have a primary origin, whereas boron is almost exclusively created in secondary processes. A relatively high boron-to-carbon (B/C) ratio in a certain energy range implies that the relevant cosmic rays are traversing a lot of gas before reaching us. “The B/C ratio tells you how cosmic rays propagate through space,” says AMS principal investigator Samuel Ting of MIT.

Previous measurements of the B/C ratio have had large errors of 15% or more, especially at high energy, mainly because of the brief data collection time available for balloon-based detectors. But the AMS has been operating on the Space Station for five years, and over this time it has collected more than 80 billion cosmic rays. The AMS detectors measure the charges of these cosmic rays, allowing the elements to be identified. The collaboration has detected over ten million carbon and boron nuclei, with energies per nucleon ranging from a few hundred MeV up to a few TeV.

The B/C ratio decreases with energy because higher-energy cosmic rays tend to take a more direct path to us (and therefore experience fewer collisions producing boron). By contrast, lower-energy cosmic rays are diverted more strongly by magnetic fields, so they bounce around like pinballs among magnetic turbulence regions in the Galaxy. Several theories have been proposed to describe the size and spacing of these turbulent regions, and these theories lead to predictions for the energy dependence of the B/C ratio. However, previous B/C observations have not been precise enough to favor one theory over another. The AMS data show very clearly that the B/C ratio is proportional to the energy raised to the -1/3 power. This result matches a prediction based on a theory of magnetohydrodynamics developed in 1941 by the Russian mathematician Andrey Kolmogorov.

These results conflict with models that predict that the B/C ratio should exhibit some more complex energy dependence, such as kinks in the B/C spectrum at specific energies. Theorists proposed these models to explain anomalous observations – by AMS and other experiments – that showed an increase in the number of positrons (anti-electrons) reaching Earth relative to electrons at high energy. The idea was that these “excess” positrons are – like boron – produced in collisions between cosmic rays and interstellar gas. But such a scenario would require that cosmic rays encounter additional scattering sites, not just magnetically turbulent regions. By ruling out these models, the AMS results support the alternative explanation – a new primary cosmic ray source that emits positrons. Candidates include pulsars and dark matter, but a lot of mystery still surrounds the unexplained positron data.

Igor Moskalenko from Stanford University is very surprised at the close match between the data and the Kolmogorov model. He expected that the ratio would deviate from a single power law in a way that might provide clues to the origin of the excess positrons. “This is a dramatic result that should lead to much better understanding of interstellar magnetohydrodynamic turbulence and propagation of cosmic rays,” he says. “On the other hand, it is very much unexpected in that it makes recent discoveries in astrophysics of cosmic rays even more puzzling.”