JUST IN: Scientists Beginning to Identify Signs That Galactic Cycles are Analogous with Sun-Earth’s Circumvolution

A Description of Extraterrestrial Galactic Obedience and Disobedience evolving within a tangled yet symmetrical display of what to some would appear to be as though disjointed and without direction. HOWEVER, when a person as myself, having watched closely for over 16 years and having intimately documented and published my research of the Sun-Earth connection, I found myself in a most optimized position to systematize newly disclosed research.


Sunspots → Solar Flares (charged particles) → Magnetic Field Shift → Shifting Ocean and Jet Stream Currents → Extreme Weather and Human Disruption (mitch battros 1998).

Such findings include new discoveries of the inner-workings of our galaxy ‘Milky Way’ and its interaction with or solar system and of course our home planet Earth. Near mind-blowing insights into the mechanics of celestial events such as supernovas, gamma ray burst, pulsars, galactic cosmic rays, and closer to home – solar flares and coronal mass ejections.


New Equation:
Increase Charged Particles and Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012).

New findings released yesterday described a large supernova event occurred in a galaxy near our own Milky Way named M74. The exploding star was 200 times larger than our Sun. The sudden blast hurled material outward from the star at a speed of 10,000 kilometers a second. That’s equivalent to 36 million kilometers an hour or 22.4 million miles an hour.

The massive explosion was one of the closest to Earth in recent years, visible as a point of light in the night sky starting July 24, 2013, said Robert Kehoe, SMU physics professor, who leads SMU’s astrophysics team.


“There are so many characteristics we can derive from the early data,” said astrophysicist Govinda Dhungana of Southern Methodist University. “This was a big massive star, burning tremendous fuel. When it finally reached a point its core couldn’t support the gravitational pull inward, suddenly it collapsed and then exploded.”


The star’s original mass was about 15 times that of our Sun, Dhungana said. Its temperature was a hot 12,000 Kelvin (approximately 22,000 degrees Fahrenheit) on the tenth day after the explosion, steadily cooling until it reached 4,500 Kelvin after 50 days. The Sun’s surface is 5,800 Kelvin, while the Earth’s core is estimated to be about 6,000 Kelvin.

The new measurements are published online here in the May 2016 issue of The Astrophysical Journal, “Extensive spectroscopy and photometry of the Type IIP Supernova 2013j.”


Cassini Explores A Methane Sea On Titan

Of the hundreds of moons in our solar system, Titan is the only one with a dense atmosphere and large liquid reservoirs on its surface, making it in some ways more like a terrestrial planet.


Both Earth and Titan have nitrogen-dominated atmospheres — over 95 percent nitrogen in Titan’s case. However, unlike Earth, Titan has very little oxygen; the rest of the atmosphere is mostly methane and trace amounts of other gases, including ethane. And at the frigid temperatures found at Saturn’s great distance from the Sun, the methane and ethane can exist on the surface in liquid form.

For this reason, scientists had long speculated about the possible existence of hydrocarbon lakes and seas on Titan, and data from the NASA/ESA Cassini-Huygens mission does not disappoint. Since arriving in the Saturn system in 2004, the Cassini spacecraft has revealed that more than 620,000 square miles (1.6 million square kilometers) of Titan’s surface — almost two percent of the total — are covered in liquid.

There are three large seas, all located close to the moon’s north pole, surrounded by numerous of smaller lakes in the northern hemisphere. Just one large lake has been found in the southern hemisphere.

The exact composition of these liquid reservoirs remained elusive until 2014, when the Cassini radar instrument was first used to show that Ligeia Mare, the second largest sea on Titan and similar in size to Lake Huron and Lake Michigan combined, is methane-rich. A new study published in the Journal of Geophysical Research: Planets, which used the radar instrument in a different mode, independently confirms this result.

“Before Cassini, we expected to find that Ligeia Mare would be mostly made up of ethane, which is produced in abundance in the atmosphere when sunlight breaks methane molecules apart. Instead, this sea is predominantly made of pure methane,” said Alice Le Gall, a Cassini radar team associate at the French research laboratory LATMOS, Paris, and lead author of the new study.

The new study is based on data collected with Cassini’s radar instrument during flybys of Titan between 2007 and 2015.

A number of possible explanations could account for the sea’s methane composition, according to Le Gall. “Either Ligeia Mare is replenished by fresh methane rainfall, or something is removing ethane from it. It is possible that the ethane ends up in the undersea crust, or that it somehow flows into the adjacent sea, Kraken Mare, but that will require further investigation.”

In their research, the scientists combined several radar observations of heat given off by Ligeia Mare. They also used data from a 2013 experiment that bounced radio signals off Ligeia. The results of that experiment were presented in a 2014 paper led by radar team associate Marco Mastrogiuseppe at Cornell University, Ithaca, New York, who also contributed to the current study.

During the 2013 experiment, the radar instrument detected echoes from the seafloor and inferred the depth of Ligeia Mare along Cassini’s track over Ligeia Mare — the first-ever detection of the bottom of an extraterrestrial sea. The scientists were surprised to find depths in the sea as great as 525 feet (160 meters) at the deepest point along the radar track.

Le Gall and her colleagues used the depth-sounding information to separate the contributions made to the sea’s observed temperature by the liquid sea and the seabed, which provided insights into their respective compositions.

“We found that the seabed of Ligeia Mare is likely covered by a sludge layer of organic-rich compounds,” adds Le Gall.

In the atmosphere of Titan, nitrogen and methane react to produce a wide variety of organic materials. Scientists believe the heaviest materials fall to the surface. Le Gall and colleagues think that when these compounds reach the sea, either by directly falling from the air, via rain or through Titan’s rivers, some are dissolved in the liquid methane. The insoluble compounds, such as nitriles and benzene, sink to the sea floor.

The study also found that the shoreline around Ligeia Mare may be porous and flooded with liquid hydrocarbons. The data span a period running from local winter to spring, and the scientists expected that — like the seaside on Earth — the surrounding solid terrains would warm more rapidly than the sea.

However, Cassini’s measurements did not show any significant difference between the sea’s temperature and that of the shore over this period. This suggests that the terrains surrounding the lakes and seas are wet with liquid hydrocarbons, which would make them warm up and cool down much like the sea itself.

“It’s a marvelous feat of exploration that we’re doing extraterrestrial oceanography on an alien moon,” said Steve Wall, deputy lead of the Cassini radar team at NASA’s Jet Propulsion Laboratory in Pasadena, California. “Titan just won’t stop surprising us.”

The Cassini-Huygens mission is a cooperative project of NASA, ESA (European Space Agency) and the Italian Space Agency. JPL, a division of the California Institute of Technology in Pasadena, manages the mission for NASA’s Science Mission Directorate in Washington. The radar instrument was built by JPL and the Italian Space Agency, working with team members from the US and several European countries.

Hubble Discovers Moon Orbiting The Dwarf Planet Makemake

Peering to the outskirts of our solar system, NASA’s Hubble Space Telescope has spotted a small, dark moon orbiting Makemake, the second brightest icy dwarf planet — after Pluto — in the Kuiper Belt.


The moon — provisionally designated S/2015 (136472) 1 and nicknamed MK 2 — is more than 1,300 times fainter than Makemake. MK 2 was seen approximately 13,000 miles from the dwarf planet, and its diameter is estimated to be 100 miles across. Makemake is 870 miles wide. The dwarf planet, discovered in 2005, is named for a creation deity of the Rapa Nui people of Easter Island.

The Kuiper Belt is a vast reservoir of leftover frozen material from the construction of our solar system 4.5 billion years ago and home to several dwarf planets. Some of these worlds have known satellites, but this is the first discovery of a companion object to Makemake. Makemake is one of five dwarf planets recognized by the International Astronomical Union.

The observations were made in April 2015 with Hubble’s Wide Field Camera 3. Hubble’s unique ability to see faint objects near bright ones, together with its sharp resolution, allowed astronomers to pluck out the moon from Makemake’s glare. The discovery was announced today in a Minor Planet Electronic Circular.

The observing team used the same Hubble technique to observe the moon as they did for finding the small satellites of Pluto in 2005, 2011, and 2012. Several previous searches around Makemake had turned up empty. “Our preliminary estimates show that the moon’s orbit seems to be edge-on, and that means that often when you look at the system you are going to miss the moon because it gets lost in the bright glare of Makemake,” said Alex Parker of Southwest Research Institute, Boulder, Colorado, who led the image analysis for the observations.

A moon’s discovery can provide valuable information on the dwarf-planet system. By measuring the moon’s orbit, astronomers can calculate a mass for the system and gain insight into its evolution.

Uncovering the moon also reinforces the idea that most dwarf planets have satellites.

“Makemake is in the class of rare Pluto-like objects, so finding a companion is important,” Parker said. “The discovery of this moon has given us an opportunity to study Makemake in far greater detail than we ever would have been able to without the companion.”

Finding this moon only increases the parallels between Pluto and Makemake. Both objects are already known to be covered in frozen methane. As was done with Pluto, further study of the satellite will easily reveal the density of Makemake, a key result that will indicate if the bulk compositions of Pluto and Makemake are also similar. “This new discovery opens a new chapter in comparative planetology in the outer solar system,” said team leader Marc Buie of the Southwest Research Institute, Boulder, Colorado.

The researchers will need more Hubble observations to make accurate measurements to determine if the moon’s orbit is elliptical or circular. Preliminary estimates indicate that if the moon is in a circular orbit, it completes a circuit around Makemake in 12 days or longer.

Determining the shape of the moon’s orbit will help settle the question of its origin. A tight circular orbit means that MK 2 is probably the product of a collision between Makemake and another Kuiper Belt Object. If the moon is in a wide, elongated orbit, it is more likely to be a captured object from the Kuiper Belt. Either event would have likely occurred several billion years ago, when the solar system was young.

The discovery may have solved one mystery about Makemake. Previous infrared studies of the dwarf planet revealed that while Makemake’s surface is almost entirely bright and very cold, some areas appear warmer than other areas. Astronomers had suggested that this discrepancy may be due to the sun warming discrete dark patches on Makemake’s surface. However, unless Makemake is in a special orientation, these dark patches should make the dwarf planet’s brightness vary substantially as it rotates. But this amount of variability has never been observed.

These previous infrared data did not have sufficient resolution to separate Makemake from MK 2. The team’s reanalysis, based on the new Hubble observations, suggests that much of the warmer surface detected previously in infrared light may, in reality, simply have been the dark surface of the companion MK 2.

There are several possibilities that could explain why the moon would have a charcoal-black surface, even though it is orbiting a dwarf planet that is as bright as fresh snow. One idea is that, unlike larger objects such as Makemake, MK 2 is small enough that it cannot gravitationally hold onto a bright, icy crust, which sublimates, changing from solid to gas, under sunlight. This would make the moon similar to comets and other Kuiper Belt Objects, many of which are covered with very dark material.

When Pluto’s moon Charon was discovered in 1978, astronomers quickly calculated the mass of the system. Pluto’s mass was hundreds of times smaller than the mass originally estimated when it was found in 1930. With Charon’s discovery, astronomers suddenly knew something was fundamentally different about Pluto. “That’s the kind of transformative measurement that having a satellite can enable,” Parker said.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA’s Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy in Washington, D.C.

Could Ferocious Lightning Storms On Other Planets Beam Radio Signals To Earth?

Ferocious lightning storms millions of times more powerful than those on Earth could be responsible for unexplained radio signals from planets orbiting other stars.


That is the finding of researchers from the University of St Andrews School of Physics and Astronomy in a piece of work published today (25 April 2016).
In 2009 French astronomers observed what was thought to be a weak radio signal coming from the exoplanet HAT-P-11b, a “mini-Neptune” about five times bigger in size than the Earth and 26 times more massive. The following year the French team made an attempt to locate the signal again, but was unsuccessful leaving the phenomenon unexplained.

The St Andrews team set out to solve the mystery. Gabriella Hodosán, the Life, Electricity, Atmosphere, Planets (LEAP) Project PhD student leading the study said: “We assumed that this signal was real and was coming from the planet. Then we asked the question: could such a radio signal be produced by lightning in the planet’s atmosphere, and if yes, how many lightning flashes would be needed for it?”

Assuming that the underlying physics of lighting is the same for all Solar System planets, like Earth and Saturn, as well as on HAT-P-11b, the researchers found that 53 lightning flashes of Saturnian lightning-strength in a km2 per hour would explain the observed radio signal on HAT-P-11b.

Dr Paul Rimmer, LEAP researcher and co-author of the paper, said: “Imagine the biggest lightning storm you’ve ever been caught in. Now imagine that this storm is happening everywhere over the surface of the planet. A storm like that would produce a radio signal approaching 1% the strength of the signal that was observed in 2009 on the exoplanet HAT-P-11b.”

Miss Hodosán continued: “Such enormous thunderstorms are not unreasonable.

“Studies conducted by our group have also shown that exoplanets orbiting really close to their host star have very dynamic atmospheres, meaning that they change continuously, producing clouds of different sizes, even whole cloud systems, all over the planet’s surface.

“HAT-P-11b, being so close to the star, is likely to have such a dynamic, cloudy atmosphere, which would allow the formations of huge thunderclouds, focusing the lightning activity to a certain regime of the planetary surface, such as the face of the planet, which was observed in 2009.”

The team hoped that this intensity of lightning could be observed with optical telescopes but were thwarted by the powerful light emissions from the star around which HAT-P-11b orbits.

The process of lightning discharges involves plasma processes at very high temperatures and the release of a large amount of energy. This results in chemical reactions in the atmosphere that otherwise would not occur. These reactions produce molecules that can be used as lighting tracers.

The team considered whether such enormous thunderstorm clouds produce these tracer molecules, which then could be observed by Earth-telescopes, and suggested hydrogen cyanide (HCN) to be such a potential fingerprint of lightning. This molecule could be observable in the infrared spectral band, even years after the huge storm on HAT-P-11b would have occurred.

Miss Hodosán said: “In the future, combined radio and infrared observations may lead to the first detection of lightning on an extrasolar planet.
“The importance of the study is not just this prediction, but it shows an original scenario for the explanation of radio emission observable on extrasolar planets.”

Dr Christiane Helling, the LEAP Project principal investigator, said: “With all necessary caution, linking extraterrestrial lightning and radio emissions will open a new window to prove the presence of atmospheres and of clouds on extrasolar planets, both being essential for the existence of life as we know it.”

New Herschel Maps Reveal Stellar Nurseries

ESA’s Herschel mission releases today a series of unprecedented maps of star-forming hubs in the plane of our Milky Way galaxy. This is accompanied by a set of catalogs of hundreds of thousands of compact sources that span all phases leading to the birth of stars in our Galaxy.


These maps and catalogs will be very valuable resources for astronomers, to exploit scientifically and for planning follow-up studies of particularly interesting regions in the Galactic Plane.

During its four years of operations (2009-2013), the Herschel space observatory scanned the sky at far-infrared and sub-millimeter wavelengths. Observations in this portion of the electromagnetic spectrum are sensitive to some of the coldest objects in the Universe, including cosmic dust, a minor but crucial component of the interstellar material from which stars are born.


The Herschel infrared Galactic Plane Survey (Hi-GAL) is the largest of all observing programs carried out with Herschel, in terms of both observing time – over 900 hours of total observations, equivalent to almost 40 days – and sky coverage – about 800 square degrees, or two percent of the entire sky. Its aim was to map the entire disc of the Milky Way, where most of its stars form and reside, in five of Herschel’s wavelength channels: 70, 160, 250, 350 and 500 μm.

Over the past two years, the Hi-GAL team has processed the data to obtain a series of calibrated maps of extraordinary quality and resolution. With a dynamical range of at least two orders of magnitude, these maps reveal the emission by diffuse material as well as huge filament structures and individual, point-like sources scattered across the images.


The images provide an unprecedented view of the Galactic Plane, ranging from diffuse interstellar material to denser filament structures of gas and dust that fragment into clumps where star formation sets in. They include pre-stellar clumps, proto-stars in various evolutionary stages and compact cores on the verge of turning into stars, as well as fully-fledged stars and the bubbles carved by their highly energetic radiation.

Today, the team releases the first part of this data set, consisting of 70 maps, each measuring two times two degrees, and provided in the five surveyed wavelengths.


“These maps are not only stunning from an aesthetic point of view, but they represent a rich data set for astronomers to investigate the different phases of star formation in our Galaxy,” explains Sergio Molinari from IAPS/INAF, Italy, Principal Investigator for the Hi-GAL Project.

Astronomers have been able to avail of data from Hi-GAL from the very beginning of the observing program since the team agreed to waive their right to a proprietary period. The observations have been made available through the ESA Herschel Science Archive, including raw data as well as data products generated by systematic pipeline processing. The data has regularly been reprocessed to gradually higher quality and fidelity products.


The present release represents an extra step in the data processing. The newly released maps are accompanied by source catalogs in each of the five bands, which can be directly used by the community to study a variety of subjects, including the distribution of diffuse dust and of star-forming regions across the Galactic Plane.

The maps cover the inner part of the Milky Way, towards the Galactic Center as seen from the Sun, with Galactic longitudes between +68° and -70°. A second release, with the remaining part of the survey, is foreseen for the end of 2016.

“It is not straightforward to extract compact sources from far-infrared images, where pre-stellar clumps and other proto-stellar objects are embedded in the diffuse interstellar medium that also shines brightly at the same wavelengths,” explains Molinari.

“For this reason, we developed a special technique to extract individual sources from the maps, maximising the contrast in order to amplify the compact objects with respect to the background.”

The result is a set of five catalogs, one for each of the surveyed wavelengths, listing the source position, flux, size, signal-to-noise ratio and other parameters related to their emission. The largest catalogue is the one compiled from the 160-μm maps, with over 300 000 sources.

“The Hi-GAL maps and catalogs provide a complete census of stellar nurseries in the inner Galaxy,” says Göran Pilbratt, Herschel Project Scientist at ESA.

“These will be an extremely useful resource for studies of star formation across the Milky Way, helping astronomers to delve into the Galactic Plane and also to identify targets for follow-up observations with other facilities.”

Cosmic Beacons Reveal The Milky Way’s Ancient Core

An international team of astronomers led by Dr. Andrea Kunder of the Leibniz Institute for Astrophysics Potsdam (AIP) in Germany has discovered that the central 2000 light years within the Milky Way Galaxy hosts an ancient population of stars. These stars are more than 10 billion years old and their orbits in space preserve the early history of the formation of the Milky Way.


For the first time the team kinematically disentangled this ancient component from the stellar population that currently dominates the mass of the central Galaxy. The astronomers used the AAOmega spectrograph on the Anglo Australian Telescope near Siding Spring, Australia, and focussed on a well-known and ancient class of stars, called RR Lyrae variables. These stars pulsate in brightness roughly once a day, which make them more challenging to study than their static counterparts, but they have the advantage of being “standard candles.” RR Lyrae stars allow exact distance estimations and are found only in stellar populations more than 10 billion years old, for example, in ancient halo globular clusters. The velocities of hundreds of stars were simultaneously recorded toward the constellation of Sagittarius over an area of the sky larger than the full moon. The team therefore was able to use the age stamp on the stars to explore the conditions in the central part of our Milky Way when it was formed.

Just as London and Paris are built on more ancient Roman or even older remains, our Milky Way galaxy also has multiple generations of stars that span the time from its formation to the present. Since heavy elements, referred to by astronomers as “metals,” are brewed in stars, subsequent stellar generations become more and more metal-rich. Therefore, the most ancient components of our Milky Way are expected to be metal-poor stars. Most of our Galaxy’s central regions are dominated by metal-rich stars, meaning that they have approximately the same metal content as our Sun, and are arrayed in a football-shaped structure called the “bar.” These stars in the bar were found to orbit in roughly the same direction around the Galactic Centre. Hydrogen gas in the Milky Way also follows this rotation. Hence it was widely believed that all stars in the centre would rotate in this way.

But to the astronomers’ astonishment, the RR Lyrae stars do not follow football-shaped orbits, but have large random motions more consistent with their having formed at a great distance from the centre of the Milky Way. “We expected to find that these stars rotate just like the rest of the bar” states lead investigator Kunder. Coauthor Juntai Shen of the Shanghai Astronomical Observatory adds, “They account for only one percent of the total mass of the bar, but this even more ancient population of stars appears to have a completely different origin than other stars there, consistent with having been one of the first parts of the Milky Way to form.”

The RR Lyrae stars are moving targets — their pulsations result in changes in their apparent velocity over the course of a day. The team accounted for this, and was able to show that the velocity dispersion or random motion of the RR Lyrae star population was very high relative to the other stars in the Milky Way’s center. The next steps will be to measure the exact metal content of the RR Lyrae population, which gives additional clues to the history of the stars, and enhance by three or four times the number of stars studied, that presently stands at almost 1000.

Meteor Activity Outlook for April 23-29, 2016

During this period the moon wanes from its full phase to nearly one-half illuminated. This is the worst time of the month to try and view meteor activity as the bright moonlight will obscure all but the brightest meteors.

meteor shower108

The estimated total hourly meteor rates for evening observers this week is near 2 for observers located in the northern hemisphere and 3 for observers located south of the equator. For morning observers the estimated total hourly rates should be near 7 as seen from mid-northern latitudes (45N) and 9 as seen from tropical southern locations (25S).

Rates are reduced during this period due to moonlight. The actual rates will also depend on factors such as personal light and motion perception, local weather conditions, alertness and experience in watching meteor activity. Note that the hourly rates listed below are estimates as viewed from dark sky sites away from urban light sources. Observers viewing from urban areas will see less activity as only the brightes t meteors will be visible from such locations.

The radiant (the area of the sky where meteors appear to shoot from) positions and rates listed below are exact for Saturday night/Sunday morning April 23/24. These positions do not change greatly day to day so the listed coordinates may be used during this entire period.

Most star atlases (available at science stores and planetariums) will provide maps with grid lines of the celestial coordinates so that you may find out exactly where these positions are located in the sky. A planisphere or computer planetarium program is also useful in showing the sky at any time of night on any date of the year.

Activity from each radiant is best seen when it is positioned highest in the sky, either due north or south along the meridian, depending on your latitude. It must be remembered that meteor activity is rarely seen at the radiant position. Rather they shoot outwards from the radiant so it is best to center your field of view so that the radiant lies at the edge and not the center.

Viewing there will allow you to easily trace the path of each meteor back to the radiant (if it is a shower member) or in another direction if it is a sporadic. Meteor activity is not seen from radiants that are located far below the horizon. The positions below are listed in a west to east manner in order of right ascension (celestial longitude). The positions listed first are located further west therefore are accessible earlier in the night while those listed further down the list rise later in the night.
These sources of meteoric activity are expected to be active this week.