Unexpected Discovery of Stars Dying Prematurely

Using recent advancements in Australian telescope technology, a Monash University-led research team has made an unexpected discovery that a large group of stars are dying prematurely, challenging our accepted view of stellar evolution.

M4 globular cluster

The findings of this new study, published today in the Monthly Notices of the Royal Astronomical Society, were made by Monash PhD student Mr Ben MacLean, supervised by Professor John Lattanzio, Dr Simon Campbell from the Max Planck Institute for Astrophysics and Dr Gayandhi De Silva from the Australian Astronomical Observatory (AAO) and the University of Sydney. Their results dispute the prevailing theory of stellar evolution, revealing that large numbers of helium burning stars are dying prematurely in the M4 globular cluster.

M4 is one of the closest and brightest globular clusters, and has already been very well studied. Professor John Lattanzio, has described the discovery as a surprising one to find in our own backyard.

“Globular clusters are some of the oldest objects in the Universe. Although we have some ideas for what is going on in them, every time we look carefully we find something unexpected. They are both fascinating and frustrating at the same time,” said Professor Lattanzio.

Researchers used a new instrument called a high efficiency and resolution multi-element spectrograph (HERMES). With HERMES fitted to the Anglo Australian Telescope (AAT) and operated by the AAO, the researchers uncovered the surprising results by working out the chemical composition of stars in M4 by deciphering their starlight. The international team found that about half of the stars tend to skip the Red Giant phase, instead becoming White Dwarfs millions of years ahead of schedule.

While the cause of this remains a mystery, the HERMES chemical analysis has revealed that premature death tends to only occur in the sodium-rich/oxygen-poor stars. The surprising thing is that our best models of these stars do not predict that they will die young.

These findings build on previous Monash University-led research which made the initial discovery that many stars were dying prematurely in the globular cluster NGC 6752. Commenting on this discovery, Dr Simon Campbell said he was surprised to find these results extend to much more ‘normal’ stars’.

“Although the phenomenon of sodium-rich stars failing to reach old age has been seen in our previous research, it was totally unexpected that it should occur on such a scale in this ‘normal’ star cluster, ” Dr Campbell said.

Until now, this research would have been impossible to conduct in Australia, instead requiring the use of larger overseas telescopes. However, thanks to the recent construction and installation of the HERMES instrument, researchers can now use the AAT to analyse the chemical composition of up to 400 stars at a time.

Dr Gayandhi De Silva from the AAO believes the recent upgrade to the AAO will benefit astronomers around the world.

“HERMES represents a significant step forward for Australia’s observational capacity. This incredible advance is unique in that it combines multi-object capability with high data quality. Otherwise we are limited to observing one star at a time to collect such high quality data. This capability makes HERMES and the AAT competitive against some of the world’s biggest telescopes and a new tool for making breakthrough discoveries,” Dr De Silva said.

Looking to the future research in this field, Professor Lattanzio highlighted the role that advanced computer simulations will play in the next stage of research.

“Computer simulations do not agree with this observation; so as well as continuing observations, new computer models will need to be generated to better understand what is taking place in the cores of these stars,” Professor Lattanzio said.

JUST IN: New Finding Depicts Evidence how Modern Science and Ancient Text Unite

Physicists and astronomers from the University of Texas at Arlington have used advanced astronomical software to accurately date  and translate ancient Greek poet Sappho’s, “Midnight Poem” which describes the night sky over Greece more than 2,500 years ago.

shhh2

Scientists are now coming out supporting their interest and research into ancient text as it relates to recent discoveries (new findings over last 5 years). Believe me, this is a new revelation. Of the multitude of scientists I have interviewed over the last 25 years, their ambition of ancient text was only whispered to me “off air.”

Sappho's -Midnight Poem- Describes Star Cluster

The scientific teams research was published yesterday in the Journal of Astronomical History and Heritage. Martin George, former president of the International Planetarium Society, now at the National Astronomical Research Institute of Thailand, also participated in the work.

science and ancient text unite

Mitch Battros and ‘Science of Cycles’
Research Sponsorship Fundraiser
**Be part of keeping ‘Science of Cycles’ alive and free.
**Your support is needed to keep this unique and valuable resource.

**Help sponsor us with your pledge as you see fit to the value you receive.
  – CLICK HERE – 

“This is an example of where the scientific community can make a contribution to knowledge described in important ancient texts, “ said Manfred Cuntz, physics professor and lead author of the study. ” Estimations had been made for the timing of this poem in the past, but we were able to scientifically confirm the season that corresponds to her specific descriptions of the night sky in the year 570 B.C.”

pleiades

Sappho’s “Midnight Poem” describes a star cluster known as the Pleiades having set at around midnight, when supposedly observed by her from the Greek island of Lesbos.

starry night pro plus1

Cuntz and co-author and astronomer Levent Gurdemir, director of the Planetarium at UTA, used advanced software called Starry Night version 7.3, to identify the earliest date that the Pleiades would have set at midnight or earlier in local time in 570 B.C. The Planetarium system Digistar 5 also allows creating the night sky of ancient Greece for Sappho’s place and time.

“Use of Planetarium software permits us to simulate the night sky more accurately on any date, past or future, at any location,” said Levent Gurdemir.”This is an example of how we are opening up the Planetarium to research into disciplines beyond astronomy, including geosciences, biology, chemistry, art, literature, architecture, history and even medicine.”

pleiades chart

The Starry Night software demonstrated that in 570 B.C., the Pleiades set at midnight on Jan. 25, which would be the earliest date the poem could be related. As the year progressed, the Pleiades set progressively earlier.

“The timing question is complex as at that time they did not have accurate mechanical clocks as we do, only perhaps water clocks” said Cuntz. “For that reason, we also identified the latest date on which the Pleiades would have been visible to Sappho from that location on different dates some time during the evening.”

The researchers also determined that the last date that the Pleiades would have been seen at the end of astronomical twilight – the moment when the Sun’s altitude is -18 degrees and the sky is regarded as perfectly dark – was March 31.

“From there, we were able to accurately seasonally date this poem to mid-winter and early spring, scientifically confirming earlier estimations by other scholars,” Cuntz said.

Sappho was the leading female poet of her time and closely rivaled Homer. Her interest in astronomy was not restricted to the “Midnight Poem.” Other examples of her work make references to the Sun, the Moon, and planet Venus.

“Sappho should be considered an informal contributor to early Greek astronomy as well as to Greek society at large,” Cuntz added. “Not many ancient poets comment on astronomical observations as clearly as she does.”

Morteza Khaledi, dean of UTA’s College of Science, congratulated the researchers on their work, which forms part of UTA’s strategic focus on data-driven discovery within the Strategic Plan 2020: Bold Solutions | Global Impact.

“This research helps to break down the traditional silos between science and the liberal arts, by using high-precision technology to accurate date ancient poetry,” Khaledi said. “It also demonstrates that the Planetarium’s reach can go way beyond astronomy into multiple fields of research.”

Dr. Manfred Cuntz is a professor of physics at UTA and active researcher in solar and stellar astrophysics, as well as astrobiology. In recent years he has focused on extra-solar planets, including stellar habitable zones and orbital stability analyses. He received his Ph.D. from the University of Heidelberg, Germany, in 1988.

Levent Gurdemir received his master’s of science degree in physics from UTA and is the current director of the university’s Planetarium. UTA uses the facility for research, teaching and community outreach, serving large numbers of K-12 students and the public at this local facility.

_______________

_science-of-cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser

paypal donate_button_sm

If banner is not working Click Here

BREAKING NEWS: New Study Shows Mantle Plume Movement Occurs More Rapidly Affecting Oceans and Climate

Still more confirmation of Battros 2012 equation identifying mantle plumes role in Earth’s core convection process. This new study also confirms mantle’s effect on ocean warming and specifically “ice caps.” This throws a hefty monkey-wrench into advocates of the 1988 made-up name global warming. I will attach my previous articles highlighting the connection to cyclical events occurring in our backyard “Milky Way” and our neighboring galaxies.

equation-mantle plumes

New Equation:
Increase Charged Particles → Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

Mitch Battros and “Science of Cycles” Research Sponsorship Fundraiser
– Be part of keeping ‘Science of Cycles’ alive and free. – Your support is needed to keep this unique and valuable resource.
– Help sponsor us with your pledge as you see fit to the value you receive.     
– CLICK HERE –

Researchers have compiled the first global set of observations of the movement of the Earth’s mantle, the 3000-kilometer thick layer of hot silicate rocks between the crust and the core, and have found that it looks very different to predictions made by geologists over the past 30  a years.

galaxy-sun-earth3_m

The team, from the University of Cambridge, used more than 2000 measurements taken from the world’s oceans in order to peer beneath the Earth’s crust and observe the chaotic nature of mantle flow. These movements have a huge influence on the way Earth looks today related to mountain formation, volcanic activity and earthquakes.

inside earth1

The result of this new research is now published in the journal Nature Geoscience. Significant ramifications across many disciplines including the study of oceanic circulation and past climate change are now made manifest creating a bit of a shake-up in the global warming world.

The inventory of more than 2000 spot observations was determined by analyzing seismic surveys of the world’s oceans. By examining variations in the depth of the ocean floor, the researchers were able to construct a global database of the mantle’s movements.

subsea-volcanoes-110712-02

“These results will have wider reaching implications,” said Hoggard. “Considering the surface is moving much faster than we had previously thought, it could also affect things like the stability of ice caps and help us to understand past climate change.”

__________________________

Below are Recent Articles Reflecting
Battros Hypothesis Turned Theory

JUST IN: New High-Energy Sources of Gamma and Cosmic Rays Discovered

JUST IN: New Maps Chart Mantle Plumes Melting Greenland Glaciers

JUST IN: Scientists Beginning to Identify Signs That  Galactic Cycles are Analogous with Sun-Earth’s Circumvolution

BREAKING NEWS: Powerful Acquiescence of Battros ‘Equation’ in New Discovery – Charged Particle Acceleration

UPDATE: New Sources of Charged Particles Discovered

BREAKING NEWS: A Dramatic Galactic Explosion Arrived at Earth in 2012

_________________

_science-of-cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. – Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.

paypal donate_button_sm

If banner is not working Click Here

Unable to display Facebook posts.
Show error

Error: (#803) Cannot query users by their username (mitch.battros)
Type: OAuthException
Code: 803
Please refer to our Error Message Reference.

BREAKING NEWS: New Study Shows Mantle Plume Movement Occurs More Rapidly Affecting Oceans and Climate

Still more confirmation of Battros 2012 equation identifying mantle plumes role in Earth’s core convection process. This new study also confirms mantle’s effect on ocean warming and specifically “ice caps.” This throws a hefty monkey-wrench into advocates of the 1988 made-up name global warming. I will attach my previous articles highlighting the connection to cyclical events occurring in our backyard “Milky Way” and our neighboring galaxies.

equation-mantle plumes

New Equation:
Increase Charged Particles → Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

Mitch Battros and “Science of Cycles” Research Sponsorship Fundraiser
– Be part of keeping ‘Science of Cycles’ alive and free. – Your support is needed to keep this unique and valuable resource.
– Help sponsor us with your pledge as you see fit to the value you receive.     
– CLICK HERE –

Researchers have compiled the first global set of observations of the movement of the Earth’s mantle, the 3000-kilometer thick layer of hot silicate rocks between the crust and the core, and have found that it looks very different to predictions made by geologists over the past 30  a years.

galaxy-sun-earth3_m

The team, from the University of Cambridge, used more than 2000 measurements taken from the world’s oceans in order to peer beneath the Earth’s crust and observe the chaotic nature of mantle flow. These movements have a huge influence on the way Earth looks today related to mountain formation, volcanic activity and earthquakes.

inside earth1

The result of this new research is now published in the journal Nature Geoscience. Significant ramifications across many disciplines including the study of oceanic circulation and past climate change are now made manifest creating a bit of a shake-up in the global warming world.

The inventory of more than 2000 spot observations was determined by analyzing seismic surveys of the world’s oceans. By examining variations in the depth of the ocean floor, the researchers were able to construct a global database of the mantle’s movements.

subsea-volcanoes-110712-02

“These results will have wider reaching implications,” said Hoggard. “Considering the surface is moving much faster than we had previously thought, it could also affect things like the stability of ice caps and help us to understand past climate change.”

__________________________

Below are Recent Articles Reflecting
Battros Hypothesis Turned Theory

JUST IN: New High-Energy Sources of Gamma and Cosmic Rays Discovered

JUST IN: New Maps Chart Mantle Plumes Melting Greenland Glaciers

JUST IN: Scientists Beginning to Identify Signs That  Galactic Cycles are Analogous with Sun-Earth’s Circumvolution

BREAKING NEWS: Powerful Acquiescence of Battros ‘Equation’ in New Discovery – Charged Particle Acceleration

UPDATE: New Sources of Charged Particles Discovered

BREAKING NEWS: A Dramatic Galactic Explosion Arrived at Earth in 2012

_________________

_science-of-cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. – Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.

paypal donate_button_sm

If banner is not working Click Here

Unable to display Facebook posts.
Show error

Error: (#803) Cannot query users by their username (mitch.battros)
Type: OAuthException
Code: 803
Please refer to our Error Message Reference.

(NEW) Scientists Detect Unexpected Drop in the Magnetic Field of X-Ray Pulsar

A team of scientists has recently presented evidence of an unexpected drop in the observed magnetic field of an accreting pulsar designated V0332+53. This downturn, observed after the pulsar underwent a bright, three-month-long X-ray outburst, could yield important information on how the accreted mass settling on the surface of a neutron star affects its magnetic field. The findings are detailed in a paper published online on Apr. 26 in the arXiv journal.

pulsargraphic

V0332+53 is an accreting pulsar emitting X-ray radiation, with a spin period of 4.4 seconds. It orbits an early type companion star in an eccentric orbit of about 34 days. Significantly, this pulsar shows sporadic giant X-ray outbursts lasting several weeks, followed by years-long intervals of dormancy.

These X-ray outburst were observed in 1989, between November 2004 and February 2005, and between June and September 2015. The latest outburst drew the attention of a team of researchers, led by Giancarlo Cusumano of the Institute of Space Astrophysics and Cosmic Physics in Palermo, Italy. Using the Burst Alert Telescope (BAT) and the X-Ray Telescope (XRT), both mounted on NASA’s Swift spacecraft, the astronomers were able to observe the pulsar in soft X-ray and high-energy bands.

pulsar_radiation2

By studying the results, the team detected a noteworthy drop in the observed magnetic field between the onset and the end of the outburst.

“The comparison of the XRT profiles in the soft X-rays provides a hint against the hypothesis of a geometrical beam variation. If, on the other hand, the line-forming region is the same at equal luminosities, the observed difference in the cyclotron energy corresponds to a difference in the magnetic field of about 1.7 ×1011 G,” the researchers wrote in the paper.

proto-star_m

The findings could be crucial for our understanding of matter accretion processes in neutron stars and could provide new insights on pulsars’ X-ray outburst events. According to the research, the magnetic field of neutron star drives the accreting matter along its field lines towards the magnetic polar caps, forming an accretion column, where matter is followed up by radiative processes that produce X-rays.

Notably, the drop in the magnetic field, as described in the latest paper, wasn’t observed after previous outbursts. The researchers found out that although the total mass accreted at the end of the 2004-2005 and the 2015 outburst is similar, during the 2004-2005 event, a higher luminosity was reached earlier. They also concluded that decay of the magnetic field is not directly proportional to the total accreted mass.

pulsar_radiation4

Moreover, the scientists hypothesize that the cause of the significant decay of the magnetic field through accretion observed at V0332+53 could be due to “diamagnetic screening.”

“In this hypothesis, the accreting plasma builds up to form a magnetically confined mound, where the gas pressure balances the magnetic stresses. This would produce, as an overall effect, a distortion of the field lines observed as a decrease of the field component along the accretion column,” the paper reads.

However, as the team noted, the lack of coverage in the first ten days of the outburst doesn’t allow them to confirm this theory.

Experiments Shine Light On Exotic Cosmic Rays

The Earth is under constant bombardment by subatomic particles called cosmic rays, including some, known as ultra-high-energy cosmic rays, which pack much more punch than the world’s most powerful particle accelerators. Fortunately, Earth’s atmosphere protects us by dissipating most of that energy before it reaches the ground.

1-experimentss

But where do these ultrafast cosmic rays come from, and how are they accelerated to such high energies—one quadrillion (1015) electron volts and more? Scientists have been searching the heavens for answers to those questions for many decades, yet much about the origin and nature of ultra-high-energy cosmic rays remains a mystery.

Now an international team of researchers is trying a different approach. Instead of looking deep into the universe with telescopes, or trying to capture the debris from atmospheric cosmic-ray collisions with particle detectors, they’re trying to duplicate the actual conditions that could contribute to cosmic-ray acceleration right here on Earth, in the National Ignition Facility (NIF) target chamber.

In a NIF discovery science campaign conducted by the Astrophysical Collisionless Shock Experiments with Lasers (ACSEL) collaboration, the researchers are carrying out a series of experiments aimed at understanding the possible role of collisionless shocks and related intergalactic magnetic fields in cosmic-ray acceleration.

In collisionless shocks, the charged particles in a plasma (a medium consisting of freely moving ions and free electrons) pass by largely without colliding with each other; such shocks occur in many astrophysical phenomena including supernova remnants, gamma-ray bursts and jets from active galactic nuclei. NIF is the only facility capable of creating plasmas with sufficiently high density (greater than 1020 particles per cubic centimeter), high flow velocity (greater than 1,000 kilometers per second) and high temperature (greater than 1,000 electron volts) to conduct these experiments. In the scaled NIF experiments, the collisional mean free path—the average distance traveled by a particle between collisions with other particles—is much larger than the experimental volume, yet the collisionless shocks created are similar to the astrophysical conditions observed in space.

The two most recent ACSEL experiments studied high-speed collisionless shock formation by firing more than 125 NIF beams at targets composed of two plastic foils facing each other. The associated magnetic field was backlighted, or probed, by protons from a tiny laser-irradiated sphere known as an “exploding pusher” target filled with a mixture of deuterium and helium-3 (D3He).

This series of experiments was the first to use the D3He-filled exploding pusher, which was developed in collaboration with the Massachusetts Institute of Technology (MIT) Plasma Science and Fusion Center, as the proton backlighter for a physics experiment on NIF.

Pluto’s Interactions With The Solar Wind Are Unique, Study Finds

Pluto has some characteristics less like that of a comet and more like much larger planets, according to an analysis of Pluto’s unique interaction with the solar wind, scientists say.

plutosintera

Using data from an instrument aboard the New Horizons spacecraft gathered on its Pluto flyby in July 2015, scientists have observed the material coming off of Pluto and seen how it interacts with the solar wind, and found it completely new – and unexpected.

“This is a type of interaction we’ve never seen before anywhere in our solar system,” said David J. McComas, lead author of the new study published today in the Journal of Geophysical Research – Space Physics, a publication of the American Geophysical Union.

McComas, professor in Princeton University’s Department of Astrophysical Sciences and vice president for the Princeton Plasma Physics Laboratory, leads the Solar Wind Around Pluto (SWAP) instrument aboard New Horizons; he also led development of SWAP when he was at the Southwest Research Institute (SwRI) in Texas. The research was funded as a part of the New Horizons project by NASA.

Space physicists say that they now have a treasure trove of information about how Pluto’s atmosphere interacts with the solar wind. Solar wind is the plasma, or charged particles, that spews off from the sun into the solar system at a supersonic 400 kilometers per second (1 million miles per hour), bathing planets, asteroids, comets and interplanetary space in a soup of mostly electrons and protons.

“The results are astonishing. We were fascinated and surprised” by the findings, McComas said.

Previously, most researchers thought that Pluto was characterized more like a comet, which has a large region of gentle slowing of the solar wind, as opposed to the abrupt diversion solar wind encounters at a planet like Mars or Venus. Instead, like a car that’s part gas- and part battery-powered, Pluto is a hybrid, the researchers say.

“This is an intermediate interaction, a completely new type. It’s not comet-like, and it’s not planet-like. It’s in-between,” McComas said. “We’ve now visited all nine of the classical planets and examined all their solar wind interactions, and we’ve never seen anything like this.”

1-plutosintera

“These results speak to the power of exploration. Once again we’ve gone to a new kind of place and found ourselves discovering entirely new kinds of expressions in nature,” said Alan Stern, New Horizons principal investigator at the Southwest Research Institute. “Many people were surprised by Pluto’s complex geology and atmosphere. This paper shows there’s even more that’s surprising there, including its atmosphere-solar wind interaction.”

Pluto continues to confound. Since it’s so far from the sun – an average of about 5.9 billion kilometers (3.7 billion miles) – and because it’s so small, scientists thought Pluto’s gravity would not be strong enough to hold heavy ions in its extended atmosphere. But, “Pluto’s gravity clearly is enough to keep material sufficiently confined,” McComas said.

Further, the scientists found that very little of Pluto’s atmosphere is comprised of neutral particles converted to electrically charged ions and swept out into space.

“This is backwards for many other planets, where the neutral particles stay relatively close to the planet,” said Michael Liemohn, a University of Michigan astrophysicist and Editor-in-Chief of JGR-Space Physics, who was not involved with the research but who helped edit the paper. “An ion particle becomes influenced by the electric and magnetic forces present in the solar system, which can be a very efficient acceleration processes. But at Pluto, McComas et al found that only a wisp of atmosphere leaves the planet as ions.”

The researchers were able to separate the heavy ions of methane, the main gas escaping from Pluto’s atmosphere, from the light ions of hydrogen that come from the sun using the SWAP instrument.

Among their Pluto findings:

– Like Earth, Pluto has a long ion tail, that extends downwind at least a distance of about 100 Pluto radii (119,000 kilometers (73,800 miles), almost three times the circumference of Earth), loaded with heavy ions from the atmosphere and with “considerable structure;”

– Pluto’s obstruction of the solar wind upwind of the planet is smaller than had been thought. The solar wind isn’t blocked until about the distance of a couple planetary radii (2,968 kilometers (1,844 miles), about the distance between Chicago and Los Angeles);

– Pluto has a very thin “Plutopause” – or boundary of Pluto’s tail of heavy ions and the sheath of the shocked solar wind that presents an obstacle to its flow.
The scientists write: “Pluto interaction with the solar wind appears to be a hybrid with the bow shock generated by mass-loading like at a comet, but the obstacle to the solar wind flow – the Plutopause – sustained by atmospheric thermal pressure as at Venus and Mars.”

Heather Elliott, astrophysicist at Southwest Research Institute and co-author on the paper, said that the study provides interesting comparisons. “Comparing the solar wind-Pluto interaction to the solar wind-interaction for other planets and bodies is interesting because the physical conditions are different for each, and the dominant physical processes depend on those conditions,” Elliott said.

What is significant, McComas said, is the range of diversity that bodies in the solar system have with the solar wind. Further, the findings offer clues to the magnetized plasmas that one might find around other stars. “The range of interaction with the solar wind is quite diverse, and this gives some comparison to help us better understand the connections in and beyond our solar system,” McComas said.

The scientists conclude: “The SWAP data will … be reanalyzed … for many years to come as the community collectively grapples with Pluto’s unique solar wind interaction – one that is unlike that at any other body in the solar system.”

New Horizons is the first mission in NASA’s New Frontiers program, managed by the agency’s Marshall Space Flight Center in Huntsville, Ala. The Johns Hopkins University Applied Physics Laboratory designed, built, and operates the New Horizons spacecraft and manages the mission under Principal Investigator Dr. Alan Stern’s direction for NASA’s Science Mission Directorate. SwRI leads the science mission, payload operations, and encounter science planning. The NASA Heliophysics program also supported the analysis of these observations.