Comet Craters: Literal Melting Pots For Life On Earth

Geochemists from Trinity College Dublin’s School of Natural Sciences may have found a solution to a long-debated problem as to where — and how — life first formed on Earth.


In a paper just published in the journal Geochimica et Cosmochimica Acta, the team proposes that large meteorite and comet impacts into the sea created structures that provided conditions favourable for life. Water then interacted with impact-heated rock to enable synthesis of complex organic molecules, and the enclosed crater itself was a microhabitat within which life could flourish.

It has long been suggested that the meteoritic and cometary material that bombarded the early Earth delivered the raw materials — complex organic molecules, such as glycine, β-alanine, γ-amino-n-butyric acid, and water — and the energy that was required for synthesis. The Trinity group’s work has provided the new hypothesis that impact craters were ideal environments to facilitate the reactions that saw the first ‘seeds of life’ take root.

First author Edel O’Sullivan, now a PhD candidate in Switzerland, said: “Previous studies investigating the origin of life have focused on synthesis in hydrothermal environments. Today these are found at mid-ocean ridges — hallmark features of plate tectonics, which likely did not exist on the early Earth. By contrast, the findings of this new study suggest that extensive hydrothermal systems operated in an enclosed impact crater at Sudbury, Ontario, Canada.”

The research was part of a wider project funded by Science Foundation Ireland and led by senior author, Professor of Geology and Mineralogy at Trinity, Balz Kamber.

Although no very ancient terrestrial impact structures are preserved, the Sudbury basin provides a unique opportunity to study the sediment that filled the basin as a guide to what the earlier impact craters would have looked like. The Sudbury structure is distinctive among the known terrestrial impact craters. It has an unusually thick (nearly 2.5 km) basin fill, and much of this is almost black in colour (due to carbon) containing also hydrothermal metal deposits.

Professor Kamber said: “Due to later tectonic forces, all the rocks of the once ~200 km-wide structure are now exposed at the surface rather than being buried. This makes it possible to take a traverse from the shocked footwall through the melt sheet and then across the entire basin fill. To a geologist, this is like a time journey from the impact event through its aftermath.”

Representative samples across the basin fill were analysed for their chemistry and for carbon isotopes, and they revealed an interesting sequence of events.

The first thing that became evident was that the crater was filled with seawater at an early stage, and remained sub-marine throughout deposition. Importantly, the water in the basin was isolated from the open ocean for long enough to deposit more than 1.5 km of volcanic rock and sediment. The lower fill is made up of rocks that formed when the water entered the crater whose floor was covered by hot impact melt. Fuel-coolant reactions deposited volcanic rocks and promoted hydrothermal activity. Above these deposits, reduced carbon starts to appear within the basin fill and the volcanic products become more basaltic.

Previously the puzzling presence of carbon in these rocks was explained by washing in from outside the crater basin. However, the new data show that it was microbial life within the crater basin that was responsible for the build-up of carbon and also for the depletion in vital nutrients, such as sulphate.

“There is clear evidence for exhaustion of molybdenum in the water column, and this strongly indicates a closed environment, shut off from the surrounding ocean,” added Edel O’Sullivan.

Only after the crater walls eventually collapsed did the study show replenishment of nutrients from the surrounding sea. These sub-marine, isolated impact basins, which experienced basaltic volcanism and were equipped with their own hydrothermal systems, thus present a new pathway to synthesis and concentration of the stepping stones to life.

Unique Fragment From Earth’s Formation Returns After Billions Of Years In Cold Storage

In a paper to be published today in the journal Science Advances, lead author Karen Meech of the University of Hawai`i’s Institute for Astronomy and her colleagues conclude that C/2014 S3 (PANSTARRS) formed in the inner Solar System at the same time as the Earth itself, but was ejected at a very early stage.


Their observations indicate that it is an ancient rocky body, rather than a contemporary asteroid that strayed out. As such, it is one of the potential building blocks of the rocky planets, such as the Earth, that was expelled from the inner Solar System and preserved in the deep freeze of the Oort Cloud for billions of years.

Karen Meech explains the unexpected observation: “We already knew of many asteroids, but they have all been baked by billions of years near the Sun. This one is the first uncooked asteroid we could observe: it has been preserved in the best freezer there is.”

C/2014 S3 (PANSTARRS) was originally identified by the Pan-STARRS1 telescope as a weakly active comet a little over twice as far from the Sun as the Earth. Its current long orbital period (around 860 years) suggests that its source is in the Oort Cloud, and it was nudged comparatively recently into an orbit that brings it closer to the Sun.

The team immediately noticed that C/2014 S3 (PANSTARRS) was unusual, as it does not have the characteristic tail that most long-period comets have when they approach so close to the Sun. As a result, it has been dubbed a Manx comet, after the [tailless cat]. Within weeks of its discovery, the team obtained spectra of the very faint object with ESO’s Very Large Telescope in Chile.

Careful study of the light reflected by C/2014 S3 (PANSTARRS) indicates that it is typical of asteroids known as S-type, which are usually found in the inner asteroid main belt. It does not look like a typical comet, which are believed to form in the outer Solar System and are icy, rather than rocky. It appears that the material has undergone very little processing, indicating that it has been deep frozen for a very long time. The very weak comet-like activity associated with C/2014 S3 (PANSTARRS), which is consistent with the sublimation of water ice, is about a million times lower than active long-period comets at a similar distance from the Sun.

The authors conclude that this object is probably made of fresh inner Solar System material that has been stored in the Oort Cloud and is now making its way back into the inner Solar System.

A number of theoretical models are able to reproduce much of the structure we see in the Solar System. An important difference between these models is what they predict about the objects that make up the Oort Cloud. Different models predict significantly different ratios of icy to rocky objects. This first discovery of a rocky object from the Oort Cloud is therefore an important test of the different predictions of the models. The authors estimate that observations of 50-100 of these Manx comets are needed to distinguish between the current models, opening up another rich vein in the study of the origins of the Solar System.

Co-author Olivier Hainaut (ESO, Garching, Germany), concludes: “We’ve found the first rocky comet, and we are looking for others. Depending how many we find, we will know whether the giant planets danced across the Solar System when they were young, or if they grew up quietly without moving much.”

* The Oort cloud is a huge region surrounding the Sun like a giant, thick soap bubble. It is estimated that it contains trillions of tiny icy bodies. Occasionally, one of these bodies gets nudged and falls into the inner Solar System, where the heat of the sun turns it into a comet. These icy bodies are thought to have been ejected from the region of the giant planets as these were forming, in the early days of the Solar System.

This research was presented in a paper entitled “Inner Solar System Material Discovered in the Oort Cloud,” by Karen Meech et al., in the journal Science Advances.

The team is composed of Karen J. Meech (Institute for Astronomy, University of Hawai`i, USA), Bin Yang (ESO, Santiago, Chile), Jan Kleyna (Institute for Astronomy, University of Hawai`i, USA), Olivier R. Hainaut (ESO, Garching, Germany), Svetlana Berdyugina (Institute for Astronomy, University of Hawai’i, USA; Kiepenheuer Institut für Sonnenphysik, Freiburg, Germany), Jacqueline V. Keane (Institute for Astronomy, University of Hawai`i, USA), Marco Micheli (ESA, Frascati, Italy), Alessandro Morbidelli (Laboratoire Lagrange/Observatoire de la Côte d’Azur/CNRS/Université Nice Sophia Antipolis, France) and Richard J. Wainscoat (Institute for Astronomy, University of Hawai`i, USA).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world’s most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world’s most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world’s largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become “the world’s biggest eye on the sky.”

JUST IN: Scientists Beginning to Identify Signs That Galactic Cycles are Analogous with Sun-Earth’s Circumvolution

A Description of Extraterrestrial Galactic Obedience and Disobedience evolving within a tangled yet symmetrical display of what to some would appear to be as though disjointed and without direction. HOWEVER, when a person as myself, having watched closely for over 16 years and having intimately documented and published my research of the Sun-Earth connection, I found myself in a most optimized position to systematize newly disclosed research.


Sunspots → Solar Flares (charged particles) → Magnetic Field Shift → Shifting Ocean and Jet Stream Currents → Extreme Weather and Human Disruption (mitch battros 1998).

Such findings include new discoveries of the inner-workings of our galaxy ‘Milky Way’ and its interaction with or solar system and of course our home planet Earth. Near mind-blowing insights into the mechanics of celestial events such as supernovas, gamma ray burst, pulsars, galactic cosmic rays, and closer to home – solar flares and coronal mass ejections.


New Equation:
Increase Charged Particles and Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012).

New findings released yesterday described a large supernova event occurred in a galaxy near our own Milky Way named M74. The exploding star was 200 times larger than our Sun. The sudden blast hurled material outward from the star at a speed of 10,000 kilometers a second. That’s equivalent to 36 million kilometers an hour or 22.4 million miles an hour.

The massive explosion was one of the closest to Earth in recent years, visible as a point of light in the night sky starting July 24, 2013, said Robert Kehoe, SMU physics professor, who leads SMU’s astrophysics team.


“There are so many characteristics we can derive from the early data,” said astrophysicist Govinda Dhungana of Southern Methodist University. “This was a big massive star, burning tremendous fuel. When it finally reached a point its core couldn’t support the gravitational pull inward, suddenly it collapsed and then exploded.”


The star’s original mass was about 15 times that of our Sun, Dhungana said. Its temperature was a hot 12,000 Kelvin (approximately 22,000 degrees Fahrenheit) on the tenth day after the explosion, steadily cooling until it reached 4,500 Kelvin after 50 days. The Sun’s surface is 5,800 Kelvin, while the Earth’s core is estimated to be about 6,000 Kelvin.

The new measurements are published online here in the May 2016 issue of The Astrophysical Journal, “Extensive spectroscopy and photometry of the Type IIP Supernova 2013j.”


Geochemical Detectives Use Lab Mimicry To Look Back In Time

New work from a research team led by Carnegie’s Anat Shahar contains some unexpected findings about iron chemistry under high-pressure conditions, such as those likely found in the Earth’s core, where iron predominates and creates our planet’s life-shielding magnetic field. Their results, published in Science, could shed light on Earth’s early days when the core was formed through a process called differentiation–when the denser materials, like iron, sunk inward toward the center, creating the layered composition the planet has today.


Earth formed from accreted matter surrounding the young Sun. Over time, the iron in this early planetary material moved inward, separating from the surrounding silicate. This process created the planet’s iron core and silicate upper mantle. But much about this how this differentiation process occurred is still poorly understood, due to the technological impossibility of taking samples from the Earth’s core to see which compounds exist there.

Seismic data show that in addition to iron, there are “lighter” elements present in the core, but which elements and in what concentrations they exist has been a matter of great debate. This is because as the iron moved inward toward the core, it interacted with various lighter elements to form different alloyed compounds, which were then carried along with the iron into the planet’s depths.

Which elements iron bonded with during this time would have been determined by the surrounding conditions, including pressure and temperature. As a result, working backward and determining which iron alloy compounds were created during differentiation could tell scientists about the conditions on early Earth and about the planet’s geochemical evolution.

The team–including Carnegie’s Jinfu Shu and Yuming Xiao–decided to investigate this subject by researching how pressures mimicking the Earth’s core would affect the composition of iron isotopes in various alloys of iron and light elements. Isotopes are versions of an element where the number of neutrons differs from the number of protons. (Each element contains a unique number of protons.)

Because of this accounting difference, isotopes’ masses are not the same, which can sometimes cause small variations in how different isotopes of the same element are partitioned in, or are “picked up” by, either silicate or iron metal. Some isotopes are preferred by certain reactions, which results in an imbalance in the proportion of each isotope incorporated into the end products of these reactions–a process that can leave behind trace isotopic signatures in rocks. This phenomenon is called isotope fractionation and is crucial to the team’s research.

Before now, pressure was not considered a critical variable affecting isotope fractionation. But Shahar and her team’s research demonstrated that for iron, extreme pressure conditions do affect isotope fractionation.

More importantly, the team discovered that due to this high-pressure fractionation, reactions between iron and two of the light elements often considered likely to be present in the core–hydrogen and carbon–would have left behind an isotopic signature in the mantle silicate as they reacted with iron and sunk to the core. But this isotopic signature has not been found in samples of mantle rock, so scientists can exclude them from the list of potential light elements in the core.

Oxygen, on the other hand, would not have left an isotopic signature behind in the mantle, so it is still on the table. Likewise, other potential core light elements still need to be investigated, including silicon and sulfur.

“What does this mean? It means we are gaining a better understanding of our planet’s chemical and physical history,” Shahar explained. “Although Earth is our home, there is still so much about its interior that we don’t understand. But evidence that extreme pressures affect how isotopes partition, in ways that we can see traces of in rock samples, is a huge step forward in learning about our planet’s geochemical evolution.”

Scientists Inch Closer to Predicting Phreatic Volcanic Eruptions

One type of a volcanic eruption, a phreatic (steam) eruption, which involves external water, is particularly energetic causing a disproportionate number of fatalities. Throughout the centuries, volcanic eruptions have claimed hundreds of thousands of lives due in part to the lack of accurate signs indicating imminent eruptions. Phreatic eruptions are extremely difficult to forecast, often occurring with little or no geophysical precursors.

phreatic eruptions1

Recently, researchers at the Deep Carbon Observatory (DCO), led by Maarten de Moor from the Observatorio Vulcanológico y Sismológico de Costa Rica, Universidad Nacional, Heredia, Costa Rica, (and postdoc at UNM) along with University of New Mexico Professor Tobias Fischer, Department of Planetary Sciences and chair of the Deep Earth Carbon Degassing initiative, measured gas emissions from crater lake at Poás volcano in Costa Rica, in an attempt to determine some of the precursors to major volcanic eruptions.

“The initial goal of the study was to quantify gas fluxes (CO2, SO2, H2S) from Poas volcano and to monitor changes in gas compositions,” said de Moor. “The motivation behind the measurements was firstly to provide robust constraints on gas fluxes as a contribution to global volcanic gas emissions to the atmosphere, and secondly to monitor degassing in order to track volcanic activity for hazard mitigation purposes.”

Excerpt from EPSL paper: “The Poás crater represents one of the most chemically extreme environments on Earth and Poás Volcano National Park was visited by more than 200,000 tourists in 2014. About 60 seismically registered phreatic blasts occurred from the lake during the same year, ranging from minor “gas bursts” to highly explosive jets ejecting ballistics, sediments, vapor and lake water to more than 400 meters above the lake surface. ”

In a new article, published in Earth and Planetary Science Letters recently, the results from a DECADE (Deep Earth Carbon Degassing initiative) project to investigate gas emissions at Poás have delivered promising results.

“Before this study, phreatic eruptions were primarily thought to be generated by changes in hydrothermal systems, and usually occur with no appreciable precursors,” said de Moor. “Our study shows that there are clear short-term changes in gas compositions prior to phreatic eruptions at Poás, and are generated by short-period changes in high temperature volcanic gas input from the deep magmatic system.”

The team measured gas emissions from the crater lake in situ using a fixed multiple gas analyzer station (Multi-GAS) during a two month period of phreatic activity in 2014. The lake was the site of intense phreatic eruptive behavior between 2006 and 2014.

Both accuracy and precision are important in the Multi-GAS measurements. The Multi-GAS instrument measures gas ratios, such as SO2/ CO2 and H2S / SO2. Precision, or the reproducibility, of the Multi-GAS measurements is important when comparing data points within the researchers’ dataset.

“The accuracy, or proximity of the measured value to the true gas ratio, is most important for quantifying gas emission rates from the volcano and for comparing our measured gas compositions to those from other volcanoes or other studies at Poas,” said de Moor. “We did a series of laboratory tests using gas mixtures to estimate both accuracy and precision of the Multi-GAS measurements. These measurements give us confidence that the variations we see in the field data are real.”

“Diagnostic tests prove that the occurrence of eruptions and high SO2/ CO2 are statistically correlated, and that the occurrence of quiescence (no eruptions) and low SO2/ CO2 are also correlated. The results of these diagnostic tests from Poás show scientists that both true predicted values (successful “prediction” of eruption based on high SO2/CO2) and false predicted values (successful “prediction” of quiescence based on low SO2/CO2) are high, indicating strong evidential worth for the association between gas composition and eruptions.”

The gas composition data show significant variations in the ratio between SO2 and CO2, which are statistically correlated with both the occurrence and the size of phreatic eruptions. The scientists found that the composition of gas emitted directly from the lake approaches that of magmatic gas days before large phreatic eruptions.

“The changes in gas chemistry are due to the susceptibility of different gas species to reaction with hydrothermal fluids,” explained de Moor. “CO2 is essentially inert in ultra-acidic conditions and therefore passes through the hydrothermal system and acid lake with minimal modification. In contrast, SO2 is partially removed from the gas phase by hydrothermal reactions producing aqueous bisulfate and liquid/solid native sulfur.”

Excerpt from DCO report: “Gas flux measurements conducted using mini-DOAS (differential optical absorption spectroscopy) show that high emission rates of SO2 from the lake occur during eruptive activity and are also associated with high SO2/CO2.”

“We argued that the efficiency of S removal from the gas is inhibited with increasing gas flux through the hydrothermal system, resulting in increasing SO2/ CO2,” de Moor said. “Importantly, the results suggest that short-period pulses of magmatic gas and heat are directly responsible for generating individual phreatic eruptions.”

Excerpt from DCO report: “These promising results show that high-frequency gas monitoring may provide an effective means of forecasting phreatic eruptions. The biggest challenge to this monitoring approach is maintaining the Multi-GAS instrument in extremely harsh conditions. Peripheral components of the station were destroyed by a large eruption in June 2014, which spelled the end of the lake gas emission experiment. However, the instrument survived and is currently monitoring changes in fumarole gas composition.”

“My main concern is simply trying to keeping these instruments running at active volcanoes, because they are constantly being damaged by toxic gases and eruptions,” said de Moor. “If we can acquire good time-series data, we will learn a lot more about how volcanoes work, why they erupt, and how to predict explosions.

“There are still many things scientists do not know about the interactions between magmatic gases and hydrothermal systems. This study shows in particular that kinetics are very important in these systems. Most geochemical models that are used to understand volcanic degassing assume equilibrium conditions. ”

“Volcanoes are perhaps the most dynamic physical and chemical systems on Earth,” said de Moor. “Once we accept that kinetic factors are often more influential than equilibrium conditions, we will come closer to understanding volcanic degassing processes.”

JUST IN: New Maps Chart Mantle Plumes Melting Greenland Glaciers

Many large glaciers in Greenland are at greater risk of melting from below than previously thought, according to new maps of the seafloor around Greenland created by an international research team. Like other recent research findings, the maps highlight the critical importance of studying the seascape under Greenland’s coastal waters to better understand and predict global sea level rise.

Uummannaq fjord

Researchers from the University of California, Irvine; NASA’s Jet Propulsion Laboratory, Pasadena, California; and other research institutions combined all observations their various groups had made during shipboard surveys of the seafloors in the Uummannaq and Vaigat fjords in west Greenland between 2007 and 2014 with related data from NASA’s Operation Icebridge and the NASA/U.S. Geological Survey Landsat satellites. They used the combined data to generate comprehensive maps of the ocean floor around 14 Greenland glaciers. Their findings show that previous estimates of ocean depth in this area were as much as several thousand feet too shallow.

Why does this matter? Because glaciers that flow into the ocean melt not only from above, as they are warmed by Sun and air, but from below, as they are warmed by water.

Iceland - Greenland Mid-Atlantic Ridge3

In most of the world, a deeper seafloor would not make much difference in the rate of melting, because typically ocean water is warmer near the surface and colder below. But Greenland is exactly the opposite. Surface water down to a depth of almost a thousand feet (300 meters) comes mostly from Arctic river runoff. This thick layer of frigid, fresher water is only 33 to 34 degrees Fahrenheit (1 degree Celsius). Below it is a saltier layer of warmer ocean water. This layer is currently more than 5 degrees F (3 degrees C) warmer than the surface layer, and climate models predict its temperature could increase another 3.6 degrees F (2 degrees C) by the end of this century.

About 90 percent of Greenland’s glaciers flow into the ocean, including the newly mapped ones. In generating estimates of how fast these glaciers are likely to melt, researchers have relied on older maps of seafloor depth that show the glaciers flowing into shallow, cold seas. The new study shows that the older maps were wrong.

“While we expected to find deeper fjords than previous maps showed, the differences are huge,” said Eric Rignot of UCI and JPL, lead author of a paper on the research. “They are measured in hundreds of meters, even one kilometer [3,300 feet] in one place.” The difference means that the glaciers actually reach deeper, warmer waters, making them more vulnerable to faster melting as the oceans warm.

Co-author Ian Fenty of JPL noted that earlier maps were based on sparse measurements mostly collected several miles offshore. Mapmakers assumed that the ocean floor sloped upward as it got nearer the coast. That’s a reasonable supposition, but it’s proving to be incorrect around Greenland.

Rignot and Fenty are co-investigators in NASA’s five-year Oceans Melting Greenland (OMG) field campaign, which is creating similar charts of the seafloor for the entire Greenland coastline. Fenty said that OMG’s first mapping cruise last summer found similar results. “Almost every glacier that we visited was in waters that were far, far deeper than the maps showed.”

The researchers also found that besides being deeper overall, the seafloor depth is highly variable. For example, the new map revealed one pair of side-by-side glaciers whose bottom depths vary by about 1,500 feet (500 meters). “These data help us better interpret why some glaciers have reacted to ocean warming while others have not,” Rignot said.

The lack of detailed maps has hampered climate modelers like Fenty who are attempting to predict the melting of the glaciers and their contribution to global sea level rise. “The first time I looked at this area and saw how few data were available, I just threw my hands up,” Fenty said. “If you don’t know the seafloor depth, you can’t do a meaningful simulation of the ocean circulation.”

BREAKING NEWS: Volcanoes Responsible for Climate Change Through Much of Earth’s History

A new study in the April 22 edition of the journal ‘Science’, reveals that volcanic activity associated with the plate-tectonic movement of continents may be responsible for climatic shifts from hot to cold throughout much of Earth’s history. The study, led by researchers at The University of Texas at Austin Jackson School of Geosciences, addresses why Earth has fluctuated from periods when the planet was covered in ice to times when polar regions were ice-free.

volcanic arc

Lead researcher Ryan McKenzie said the team found that periods when volcanoes along continental arcs were more active coincided with warmer trends over the past 720 million years. Conversely, periods when continental arc volcanoes were less active coincided with colder, or cooling trends.

For this study, researchers looked at the uranium-lead crystallization ages of the mineral zircon, which is largely created during continental volcanic arc activity. They looked at data for roughly 120,000 zircon grains from thousands of samples across the globe.

zircon and mantle

Zircon is often associated with mantle plumes. If the zircon Hf model age is very close to its formation age (zircon U–Pb) – the magma could be subsequent of a depleted mantle plume. On the other hand, if the zircon Hf model age is older than its formation age, it can be concluded that the magma was derived from enriched mantle sources or was contaminated by crustal materials.

“We’re looking at changes in zircon production on various continents throughout Earth’s history and seeing how the changes correspond with the various cooling and warming trends,” McKenzie said. “Ultimately, we find that during intervals of high zircon production we have warming trends, and as zircon production diminishes, we see a shift into our cooling trends.”

equation-mantle plumes

New Equation:
Increase Charged Particles → Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

One question unanswered in recent climate change debates, is what caused the fluctuations in CO2 observed in the geologic record. Other theories have suggested that geological forces such as mountain building have, at different times in the planet’s history, introduced large amounts of new material to the Earth’s surface, and weathering of that material has drawn CO2 out of the atmosphere.


Using nearly 200 published studies and their own fieldwork and data, researchers created a global database to reconstruct the volcanic history of continental margins over the past 720 million years.

“We studied sedimentary basins next to former volcanic arcs, which were eroded away over hundreds of millions of years,” said co-author Brian Horton, a professor in the Jackson School’s Department of Geological Sciences. “The distinguishing part of our study is that we looked at a very long geologic record – 720 million years – through multiple warming and cooling trends.”

The cooling periods tended to correlate with the assembly of Earth’s supercontinents, which was a time of diminished continental volcanism, Horton said. The warming periods correlated with continental breakup, a time of enhanced continental volcanism.