Both Push and Pull Drive Our Galaxy’s Race Through Space

Although we can’t feel it, we’re in constant motion: the earth spins on its axis at about 1,600 km/h; it orbits around the Sun at about 100,000 km/h; the Sun orbits our Milky Way galaxy at about 850,000 km/h; and the Milky Way galaxy and its companion galaxy Andromeda are moving with respect to the expanding universe at roughly 2 million km/h (630 km per second). But what is propelling the Milky Way’s race through space?

Until now, scientists assumed that a dense region of the universe is pulling us toward it, in the same way that gravity made Newton’s apple fall to earth. The initial “prime suspect” was called the Great Attractor, a region of a half dozen rich clusters of galaxies 150 million lightyears from the Milky Way. Soon after, attention was drawn to an area of more than two dozen rich clusters, called the Shapley Concentration, which sits 600 million lightyears beyond the Great Attractor.

Now researchers led by Prof. Yehuda Hoffman at the Hebrew University of Jerusalem report that our galaxy is not only being pulled, but also pushed. In a new study in the forthcoming issue of Nature Astronomy, they describe a previously unknown, very large region in our extragalactic neighborhood. Largely devoid of galaxies, this void exerts a repelling force on our Local Group of galaxies.

“By 3-d mapping the flow of galaxies through space, we found that our Milky Way galaxy is speeding away from a large, previously unidentified region of low density. Because it repels rather than attracts, we call this region the Dipole Repeller,” said Prof. Yehuda Hoffman. “In addition to being pulled towards the known Shapley Concentration, we are also being pushed away from the newly discovered Dipole Repeller. Thus it has become apparent that push and pull are of comparable importance at our location.”

The presence of such a low density region has been suggested previously, but confirming the absence of galaxies by observation has proved challenging. But in this new study, Hoffman, at the Hebrew university’s Racah Institutes of Physics, working with colleagues in the USA and France, tried a different approach.

Using powerful telescopes, among them the Hubble Space Telescope, they constructed a 3-dimensional map of the galaxy flow field. Flows are direct responses to the distribution of matter, away from regions that are relatively empty and toward regions of mass concentration; the large scale structure of the universe is encoded in the ?ow ?eld of galaxies.

They studied the peculiar velocities – those in excess of the Universe’s rate of expansion – of galaxies around the Milky Way, combining different datasets of peculiar velocities with a rigorous statistical analysis of their properties. They thereby inferred the underlying mass distribution that consists of dark matter and luminous galaxies—over-dense regions that attract and under-dense ones that repel.

By identifying the Dipole Repeller, the researchers were able to reconcile both the direction of the Milky Way’s motion and its magnitude. They expect that future ultra-sensitive surveys at optical, near-infrared and radio wavelengths will directly identify the few galaxies expected to lie in this void, and directly confirm the void associated with the Dipole Repeller.

Fermi Gamma-ray Space Telescope Discovers Most Extreme Blazars Yet

NASA’s Fermi Gamma-ray Space Telescope has identified the farthest gamma-ray blazars, a type of galaxy whose intense emissions are powered by supersized black holes. Light from the most distant object began its journey to us when the universe was 1.4 billion years old, or nearly 10 percent of its present age.

“Despite their youth, these far-flung blazars host some of the most massive black holes known,” said Roopesh Ojha, an astronomer at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “That they developed so early in cosmic history challenges current ideas of how supermassive black holes form and grow, and we want to find more of these objects to help us better understand the process.”

Ojha presented the findings Monday, Jan. 30, at the American Physical Society meeting in Washington, and a paper describing the results has been submitted to The Astrophysical Journal Letters.

Blazars constitute roughly half of the gamma-ray sources detected by Fermi’s Large Area Telescope (LAT). Astronomers think their high-energy emissions are powered by matter heated and torn apart as it falls from a storage, or accretion, disk toward a supermassive black hole with a million or more times the sun’s mass. A small part of this infalling material becomes redirected into a pair of particle jets, which blast outward in opposite directions at nearly the speed of light. Blazars appear bright in all forms of light, including gamma rays, the highest-energy light, when one of the jets happens to point almost directly toward us.

Previously, the most distant blazars detected by Fermi emitted their light when the universe was about 2.1 billion years old. Earlier observations showed that the most distant blazars produce most of their light at energies right in between the range detected by the LAT and current X-ray satellites, which made finding them extremely difficult.

Then, in 2015, the Fermi team released a full reprocessing of all LAT data, called Pass 8, that ushered in so many improvements astronomers said it was like having a brand new instrument. The LAT’s boosted sensitivity at lower energies increased the chances of discovering more far-off blazars.

The research team was led by Vaidehi Paliya and Marco Ajello at Clemson University in South Carolina and included Dario Gasparrini at the Italian Space Agency’s Science Data Center in Rome as well as Ojha. They began by searching for the most distant sources in a catalog of 1.4 million quasars, a galaxy class closely related to blazars. Because only the brightest sources can be detected at great cosmic distances, they then eliminated all but the brightest objects at radio wavelengths from the list. With a final sample of about 1,100 objects, the scientists then examined LAT data for all of them, resulting in the detection of five new gamma-ray blazars.

Expressed in terms of redshift, astronomers’ preferred measure of the deep cosmos, the new blazars range from redshift 3.3 to 4.31, which means the light we now detect from them started on its way when the universe was between 1.9 and 1.4 billion years old, respectively.

“Once we found these sources, we collected all the available multiwavelength data on them and derived properties like the black hole mass, the accretion disk luminosity, and the jet power,” said Paliya.

Two of the blazars boast black holes of a billion solar masses or more. All of the objects possess extremely luminous accretion disks that emit more than two trillion times the energy output of our sun. This means matter is continuously falling inward, corralled into a disk and heated before making the final plunge to the black hole.

“The main question now is how these huge black holes could have formed in such a young universe,” said Gasparrini. “We don’t know what mechanisms triggered their rapid development.”

In the meantime, the team plans to continue a deep search for additional examples.

“We think Fermi has detected just the tip of the iceberg, the first examples of a galaxy population that previously has not been detected in gamma rays,” said Ajello.

New Study Suggest Dwarf Cluster Formed Milky Way

Using data from the Sloan Digital Sky Survey (SDSS) and various optical telescopes, a team of astronomers has discovered seven distinct groups of dwarf galaxies with just the right starting conditions to eventually merge and form larger galaxies, including spiral galaxies like the Milky Way. This discovery offers compelling evidence that the mature galaxies we see in the universe today were formed when smaller galaxies merged many billions of years ago.

“We know that to make a large galaxy, the universe has to bring together many smaller galaxies,” said Sabrina Stierwalt an astronomer with the National Radio Astronomy Observatory (NRAO) and University of Virginia in Charlottesville. “For the first time, we have found examples of the first steps in this process — entire populations of dwarf galaxies that are all bound together in the same general neighborhoods.”

Stierwalt and her team began their search by poring over SDSS data looking for pairs of interacting dwarf galaxies. The astronomers then examined the images to find specific pairs that appeared to be part of even larger assemblages of similar galaxies.

The researchers then used the Magellan telescope in Chile, the Apache Point Observatory in New Mexico, and the Gemini telescope in Hawaii to confirm that the apparent clusters are not just on the same line of sight but are also approximately the same distance from Earth, indicating they are gravitationally bound together.

This discovery of long-sought groups of tiny galaxies is reported online in the journal Nature Astronomy.

“We hope this discovery will enable future studies of groups of dwarf galaxies and offer insights into the formation of galaxies like the Milky Way,” concluded Stierwalt.

One of the Brightest Distant Galaxies Known Discovered

An international team led by researchers from the Instituto de Astrofísica de Canarias (IAC) and the University of La Laguna (ULL) has discovered one of the brightest “non-active” galaxies in the early universe. Finding BG1429+1202 was made possible by the “help” of a massive elliptical galaxy along the line of sight to the object, which acted as a kind of lens, amplifying the brightness and distorting the observed image. The results, published in Astrophysical Journal Letters, are part of the BELLS GALLERY project, based on the analysis of one and a half million spectra of galaxies from the Sloan Digital Sky Survey (SDSS).

The phenomenon of gravitational lensing, predicted by Einstein’s General Theory of Relativity, is produced when light is deflected as it passes by a very massive object. For a distant observer the mass of the elliptical galaxy acts on the light as if it were a huge lens, producing a much brighter image of the source, BG1429+1202, allowing us to see details which would otherwise be too faint to detect.

“This is one of the few known cases of galaxies”, says Rui Marques Chaves, a doctoral student at the IAC-ULL and first author of the article, “with a very high apparent brightness and also an intrinsically high luminosity. The observations allowed us to determine its key properties in a very short time”. To study this system, two telescopes at the Observatorio del Roque de los Muchachos (Garafía, La Palma) were used: the Gran Telescopio CANARIAS (GTC) and the William Herschel Telescope (WHT), of the Isaac Newton Group of Telescopes (ING). The system is formed of a massive elliptical galaxy at a distance of 5,400 million light years, and behind it is BG1429+1202, which emits Lyman alpha radiation, 11,400 million light years away from us (we see it as it was only some 2,300 million years after the Big Bang). The lensing galaxy produces four distinct images of the distant galaxy, with a flux which is nine times bigger than it would be without this natural lens lying along the line of sight.

An exceptional characteristic of BG1429+1202 is its very high luminosity in the Lyman alpha emission line, one of the brightest in the ultraviolet range, because other similar cases of lensed galaxies do not show such strong emission in this line. Although the gravitational lensing effect has been used in many research projects, the method of selecting distant Lyman-alpha emitting galaxies has been used for the first time in the BELLS GALLERY project. “We analyzed around a million and a half spectra of galaxies”, adds Yiping Shu, an astronomer at the National Astronomical Observatories (NAOC), in Beijing (China) and first author of earlier publications from the same project. “They were obtained with the Sloan Telescope, at the Apache Point Observatory in New Mexico (USA), and we have detected emission in Lyma-alpha from galaxies much further away than their lenses in 187 cases, of which we have gone on to observe 21 with the Hubble Space Telescope. Those observations confirm that the majority of these objects are gravitationally lensed”.

The increase in apparent brightness (the brightness observed from Earth) of distant galaxies which is produced by gravitational lenses allows us to obtain data of improved quality. “With telescopes such as the GTC and the WHT”, explains Ismael Pérez Fournon, a researcher at the IAC-ULL and coordinator of this article, “We can carry out studies which would be impossible without the presence of the lenses. In practice it is as if we were observing already with one of the future giant telescopes, such as the Extremely Large European Telescope (E-ELT) of 39 m or the Thirty Meter Telescope (TMT).” “BG1429+1202 is so bright that it can even be seen on the photographic images of the Digital Sky Survey”, adds Paloma Matínez Navajas, a researcher at the IAC and another of the authors of the study.

In spite of the numerous previous studies of gravitational lenses based on images and spectra from the Sloan Digital Sky Survey, BG1429+1202 had not been noticed until this work. “Discoveries like BG1429+1202 demonstrate the way in which big astronomical data sets from large surveys can be mined for new astrophysical applications. At the National Optical Astronomy Observatory (NOAO, in Tucson, Arizona USA), we are deploying open-access capabilities to support these kinds of survey-scale archival research projects using public wide-field imaging data from the Dark Energy Camera and other instruments, as well as future data sets from projects such as the Dark Energy Spectroscopic Instrument (DESI), concludes Adam Bolton, Associate Director of the NOAO and an author on this paper.

New Study Identifies Distinctive Emission Signatures of Pulsars

In two studies, international teams of astronomers suggest that recent images from NASA’s Chandra X-ray Observatory of two pulsars – Geminga and B0355+54 – may help shine a light on the distinctive emission signatures of pulsars, as well as their often perplexing geometry.

Pulsars are a type of neutron star that are born in supernova explosions when massive stars collapse. Discovered initially by lighthouse-like beams of radio emission, more recent research has found that energetic pulsars also produce beams of high energy gamma rays..

Interestingly, the beams rarely match up, said Bettina Posselt, senior research associate in astronomy and astrophysics, Penn State. The shapes of observed radio and gamma-ray pulses are often quite different and some of the objects show only one type of pulse or the other. These differences have generated debate about the pulsar model.

“It’s not fully understood why there are variations between different pulsars,” said Posselt. “One of the main ideas here is that pulse differences have a lot to do with geometry – and it also depends on how the pulsar’s spin and magnetic axes are oriented with respect to line of sight whether you see certain pulsars or not, as well as how you see them.”

Chandra’s images are giving the astronomers a closer than ever look at the distinctive geometry of the charged particle winds radiating in X-ray and other wavelengths from the objects, according to Posselt. Pulsars rhythmically rotate as they rocket through space at speeds reaching hundreds of kilometers a second. Pulsar wind nebulae (PWN) are produced when the energetic particles streaming from pulsars shoot along the stars’ magnetic fields, form tori – donut-shaped rings – around the pulsar’s equatorial plane, and jet along the spin axis, often sweeping back into long tails as the pulsars’ quickly cut through the interstellar medium.

“This is one of the nicest results of our larger study of pulsar wind nebulae,” said Roger W. Romani, professor of physics at Stanford University and principal investigator of the Chandra PWN project. “By making the 3-D structure of these winds visible, we have shown how one can trace back to the plasma injected by the pulsar at the center. Chandra’s fantastic X-ray acuity was essential for this study, so we are happy that it was possible to get the deep exposures that made these faint structures visible.”

A spectacular PWN is seen around the Geminga pulsar. Geminga – one of the closest pulsars at only 800 light years away from Earth – has three unusual tails, said Posselt. The streams of particles spewing out of the alleged poles of Geminga – or lateral tails – stretch out for more than half a light year, longer than 1,000 times the distance between the Sun and Pluto. Another shorter tail also emanates from the pulsar.

The astronomers said that a much different PWN picture is seen in the X-ray image of another pulsar called B0355+54, which is about 3,300 light years away from Earth. The tail of this pulsar has a cap of emission, followed by a narrow double tail that extends almost five light years away from the star.

While Geminga shows pulses in the gamma ray spectrum, but is radio quiet, B0355+54 is one of the brightest radio pulsars, but fails to show gamma rays.

“The tails seem to tell us why that is,” said Posselt, adding that the pulsars’ spin axis and magnetic axis orientations influence what emissions are seen on Earth.

According to Posselt, Geminga may have magnetic poles quite close to the top and bottom of the object, and nearly aligned spin poles, much like Earth. One of the magnetic poles of B0355+54 could directly face the Earth. Because the radio emission occurs near the site of the magnetic poles, the radio waves may point along the direction of the jets, she said. Gamma-ray emission, on the other hand, is produced at higher altitudes in a larger region, allowing the respective pulses to sweep larger areas of the sky.

“For Geminga, we view the bright gamma ray pulses and the edge of the pulsar wind nebula torus, but the radio beams near the jets point off to the sides and remain unseen,” Posselt said.

The strongly bent lateral tails offer the astronomers clues to the geometry of the pulsar, which could be compared to either jet contrails soaring into space, or to a bow shock similar to the shockwave created by a bullet as it is shot through the air.

Oleg Kargaltsev, assistant professor of physics, George Washington University, who worked on the study on B0355+54, said that the orientation of B0355+54 plays a role in how astronomers see the pulsar, as well. The study is available online in arXiv.

“For B0355+54, a jet points nearly at us so we detect the bright radio pulses while most of the gamma-ray emission is directed in the plane of the sky and misses the Earth,” said Kargaltsev. “This implies that the pulsar’s spin axis direction is close to our line-of-sight direction and that the pulsar is moving nearly perpendicularly to its spin axis.”

Noel Klingler, a graduate research assistant in physics, George Washington University, and lead author of the B0355+54 paper, added that the angles between the three vectors – the spin axis, the line-of-sight, and the velocity – are different for different pulsars, thus affecting the appearances of their nebulae.

“In particular, it may be tricky to detect a PWN from a pulsar moving close to the line-of-sight and having a small angle between the spin axis and our line-of-sight,” said Klingler.

In the bow-shock interpretation of the Geminga X-ray data, Geminga’s two long tails and their unusual spectrum may suggest that the particles are accelerated to nearly the speed of light through a process called Fermi acceleration. The Fermi acceleration takes place at the intersection of a pulsar wind and the interstellar material, according to the researchers, who report their findings on Geminga in the current issue of Astrophysical Journal.

Although different interpretations remain on the table for Geminga’s geometry, Posselt said that Chandra’s images of the pulsar are helping astrophysicists use pulsars as particle physics laboratories. Studying the objects gives astrophysicists a chance to investigate particle physics in conditions that would be impossible to replicate in a particle accelerator on earth.

“In both scenarios, Geminga provides exciting new constraints on the acceleration physics in pulsar wind nebulae and their interaction with the surrounding interstellar matter,” she said.

Asymmetric Structure in Supermassive Black Hole at Milky Way’s Center

The supermassive black hole candidate at the center of our Galaxy (associated with the radio source Sagittarius A*) is a prime candidate for studying the physical phenomena associated with accretion on to a supermassive black hole.

Sgr A* is thought to accrete at an extremely low rate; analogous situations in X-ray binary stars suggest that a jet may be present, making it challenging to formulate a fully self-consistent model that simultaneously explains its spectrum, its variability, its size and its shape.

Because Sgr A* is by far the closest supermassive black hole, its expected angular size (the shadow cast from its event horizon) is the largest of any known black hole candidate, making it a prime target for studies using very long baseline interferometry at mm wavelengths, which are capable of reaching spatial resolutions comparable to the expected shadow size.

CfA astronomer Shep Doeleman was a member of a team of twenty-two astronomers that used a combination of three widely separated millimeter telescope facilities, the Very Long Baseline Array, the Robert C. Byrd Green Bank Telescope, and the Large Millimeter Telescope Alfonso Serrano, to try to image the Sgr A* shadow. Their observations were taken in May of 2015 over the course of one evening, and the data from all the telescopes were analyzed to ascertain the geometry.

The scientists found some evidence for an asymmetric shape – a tiny extension that seems to protrude only a few AU from the central source (one astronomical unit is the average distance of the Earth from the Sun). This preliminary result could be due to scattering of the radiation by interstellar material, but it might also be associated with the black hole. Other observers have reported spotting some similar asymmetries, but the picture remains uncertain. The new result is a step forward, however, and future observations will try to refine and extend the current conclusions.

Scientists Close-in On the True Mass of Milky Way

It’s a problem of galactic complexity, but researchers are getting closer to accurately measuring the mass of the Milky Way Galaxy.

In the latest of a series of papers that could have broader implications for the field of astronomy, McMaster astrophysicist Gwendolyn Eadie, working with her PhD supervisor William Harris and with a Queen’s University statistician, Aaron Springford, has refined Eadie and Harris’s own method for measuring the mass of the galaxy that is home to our solar system.

The short answer, using the refined method, is between 4.0 X 1011 and 5.8 X 1011 solar masses. In simpler terms, that’s about the mass of our Sun, multiplied by 400 to 580 billion. The Sun, for the record, has a mass of two nonillion (that’s 2 followed by 30 zeroes) kilograms, or 330,000 times the mass of Earth. This Galactic mass estimate includes matter out to 125 kiloparsecs from the center of the Galaxy (125 kiloparsecs is almost 4 X 1018 kilometers). When the mass estimate is extended out to 300kpc, the mass is approximately 9 X 1011 solar masses.

Measuring the mass of our home galaxy, or any galaxy, is particularly difficult. A galaxy includes not just stars, planets, moons, gases, dust and other objects and material, but also a big helping of dark matter, a mysterious and invisible form of matter that is not yet fully understood and has not been directly detected in the lab.
Astronomers and cosmologists, however, can infer the presence of dark matter through its gravitational influence on visible objects.

Eadie, a PhD candidate in Physics and Astronomy at McMaster University, has been studying the mass of the Milky Way and its dark-matter component since she started graduate school. She uses the velocities and positions of globular star clusters that orbit the Milky Way. The orbits of globular clusters are determined by the galaxy’s gravity, which is dictated by its massive dark matter component.

Previously, Eadie had developed a technique for using Globular Cluster (GCs) velocities, even when the data was incomplete.

The total velocity of a GC must be measured in two directions: one along our line-of-sight, and one across the plane of the sky, called the proper motion. Researchers have not yet measured the proper motions of all the GCs around the Milky Way. Eadie, however, had previously developed a way to use these velocities that are only partially known, in addition to the velocities that are fully known, to estimate the mass of the galaxy.

Now, Eadie has used a statistical method called a hierarchical Bayesian analysis that includes not only complete and incomplete data, but also incorporates measurement uncertainties in an extremely complex but more complete statistical formula. To make the newest calculation, the authors took into account that data are merely measurements of the positions and velocities of the globular clusters and not necessarily the true values. They now treat the true positions and velocities as parameters in the model (which meant adding 572 new parameters to the existing method).

Bayesian statistical methods are not new, but their application to astronomy is still in its early stages, and Eadie believes their capacity to accommodate uncertainty while still producing meaningful results opens many new opportunities in the field.

“As the era of Big Data approaches, I think it is important that we think carefully about the statistical methods we use in data analysis, especially in astronomy, where the data may be incomplete and have varying degrees of uncertainty,” she says.

Bayesian hierarchies have been useful in other fields but are just starting to be applied in astronomy, Eadie explained.