Evidence for a Time-Lag in Solar Resonance of Galactic Cosmic Rays

The solar modulation effect of cosmic rays in the heliosphere is an energy, time, and particle dependent phenomenon that arises from a combination of basic particle transport processes such as diffusion, convection, adiabatic cooling, and drift motion.

Making use of a large collection of time-resolved cosmic-ray data from recent space missions, we construct a simple predictive model of solar modulation that depends on direct solar-physics inputs: the number of solar sunspots and the tilt angle of the heliospheric current sheet.

Under this framework, we present calculations of cosmic-ray proton spectra, positron/electron and antiproton/proton ratios, and their time dependence in connection with the evolving solar activity. We report evidence for a time lag of approximately eight months, between solar-activity data and cosmic-ray flux measurements in space, which reflects the dynamics of the formation of the modulation region. This result enables us to forecast the cosmic-ray flux near Earth well in advance by monitoring solar activity.

Surprise Solar Event and Galactic Cosmic Rays Associated with Ozone Hole Fluctuation

The fast flow associated with the northern extension Coronal Hole, which crossed the central meridian on Nov 4th has now arrived to Earth. The solar wind speed has increased up to the current value of 620 km/s, and the Bz component of the interplanetary magnetic field was observed mainly southward for a long period of time of more than 3 hours.

This strong southward field, concurrent with a fast solar wind produced a geomagnetic storm. NOAA reported the Kp event at level 6 and local stations at Dourbes reported K=5.  The high speed stream is expected to persist until Nov 10th and further minor to moderate geomagnetic storms are highly possible.

Ozone Fluctuation Caused by Galactic Cosmic Rays… 

Recent studies have presented evidence indicating cosmic rays, rather than solar winds play a dominant role in breaking down ozone-depleting molecules and then ozone. Cosmic rays are energy particles originating in space.

Ozone is a gas mostly concentrated in the ozone layer, a region located in the stratosphere several miles above the Earth’s surface. It absorbs almost all of the Sun’s high-frequency ultraviolet light, which is potentially damaging to life and causes such diseases as skin cancer and cataracts. The Antarctic ozone hole is larger than the size of North America.

More on Galactic Cosmic Rays Effect to Earth Coming Next…


Science Of Cycles Research Support Fund



Science Of Cycles Multi-Disaster Relief Initiative

Be a part of Science Of Cycles Multi-Disaster Relief Initiative. Lets come together and help those who need a helping hand. Notice I did not specify a hurricane name, why? Because there is more than Harvey and Irma heading our way. The banner is set up for you to be able to place any amount you wish.   Cheers, Mitch



NASA Investigates Invisible Magnetic Bubbles In Outer Solar System

Space may seem empty, but it’s actually a dynamic place populated with near-invisible matter, and dominated by forces, in particular those created by magnetic fields. Magnetospheres — the magnetic fields around most planets — exist throughout our solar system. They deflect high-energy, charged particles called cosmic rays that are spewed out by the Sun or come from interstellar space. Along with atmospheres, they happen to protect the planets’ surfaces from this harmful radiation.

But not all magnetospheres are created equal: Venus and Mars do not have magnetospheres at all, while the other planets — and one moon — have ones that are surprisingly different.

NASA has launched a fleet of missions to study the planets in our solar system — many of which have sent back crucial information about magnetospheres. The twin Voyagers measured magnetic fields as they traveled out to the far reaches of the solar system, and discovered Uranus and Neptune’s magnetospheres. Other planetary missions including Galileo, Cassini and Juno, and a number of spacecraft that orbit Earth, provide observations to create a comprehensive understanding of how planets form magnetospheres, as well as how they continue to interact with the dynamic space environment around them.


Earth’s magnetosphere is created by the constantly moving molten metal inside Earth. This invisible “force field” around our planet has a general shape resembling an ice cream cone, with a rounded front and a long, trailing tail that faces away from the sun. The magnetosphere is shaped that way because of the near-constant flow of solar wind and magnetic field from the Sun-facing side.

Earth’s and other magnetospheres deflect charged particles away from the planet — but also trap energetic particles in radiation belts. Auroras are caused by particles that rain down into the atmosphere, usually not far from the magnetic poles.

It’s possible that Earth’s magnetosphere was essential for the development of conditions friendly to life, so learning about magnetospheres around other planets and moons is a big step toward determining if life could have evolved there.


Mercury, with a substantial iron-rich core, has a magnetic field that is only about 1 percent as strong as Earth’s. It is thought that the planet’s magnetosphere is compressed by the intense solar wind, limiting its extent. The MESSENGER satellite orbited Mercury from 2011 to 2015, helping us understand our tiny terrestrial neighbor.


After the Sun, Jupiter has by far the strongest and biggest magnetic field in our solar system — it stretches about 12 million miles from east to west, almost 15 times the width of the Sun. (Earth’s, on the other hand, could easily fit inside the Sun — except for its outstretched tail.) Jupiter does not have a molten metal core; instead, its magnetic field is created by a core of compressed liquid metallic hydrogen.

One of Jupiter’s moons, Io, has powerful volcanic activity that spews particles into Jupiter’s magnetosphere. These particles create intense radiation belts and auroras around Jupiter.

Ganymede, Jupiter’s largest moon, also has its own magnetic field and magnetosphere — making it the only moon with one. Its weak field, nestled in Jupiter’s enormous shell, scarcely ruffles the planet’s magnetic field.


Saturn’s huge ring system transforms the shape of its magnetosphere. That’s because oxygen and water molecules evaporating from the rings funnel particles into the space around the planet. Some of Saturn’s moons help trap these particles, pulling them out of Saturn’s magnetosphere, though those with active volcanic geysers — like Enceladus — spit out more material than they take in. NASA’s Cassini mission followed in the Voyagers’ wake, and studied Saturn’s magnetic field from orbit around the ringed planet between 2004 and 2017.


Uranus’ magnetosphere wasn’t discovered until 1986, when data from Voyager 2’s flyby revealed weak, variable radio emissions and confirmed when Voyager 2 measured the magnetic field directly. Uranus’ magnetic field and rotation axis are out of alignment by 59 degrees, unlike Earth’s, whose magnetic field and rotation axis are nearly aligned. On top of that, the magnetic field does not go directly through the center of the planet, so the strength of the magnetic field varies dramatically across the surface. This misalignment also means that Uranus’ magnetotail — the part of the magnetosphere that trails behind the planet, away from the Sun — is twisted into a long corkscrew.


Neptune was also visited by Voyager 2, in 1989. Its magnetosphere is offset from its rotation axis, but only by 47 degrees. Similar to Uranus, Neptune’s magnetic field strength varies across the planet. This means that auroras can appear across the planet — not just close to the poles, like on Earth, Jupiter and Saturn.

And beyond

Outside of our solar system, auroras, which indicate the presence of a magnetosphere, have been spotted on brown dwarfs — objects that are bigger than planets but smaller than stars. There’s also evidence to suggest that some giant exoplanets have magnetospheres, but we have yet to see conclusive proof. As scientists learn more about the magnetospheres of planets in our solar system, it can help us one day identify magnetospheres around more distant planets as well.

Wobbling Galaxies: New Evidence For Dark Matter Makes It Even More Exotic

Using the NASA/ESA Hubble Space Telescope, astronomers have discovered that the brightest galaxies within galaxy clusters “wobble” relative to the cluster’s centre of mass. This unexpected result is inconsistent with predictions made by the current standard model of dark matter. With further analysis it may provide insights into the nature of dark matter, perhaps even indicating that new physics is at work.

Dark matter constitutes just over 25 percent of all matter in the Universe but cannot be directly observed, making it one of the biggest mysteries in modern astronomy. Invisible halos of elusive dark matter enclose galaxies and galaxy clusters alike. The latter are massive groupings of up to a thousand galaxies immersed in hot intergalactic gas. Such clusters have very dense cores, each containing a massive galaxy called the “brightest cluster galaxy” (BCG).

The standard model of dark matter (cold dark matter model) predicts that once a galaxy cluster has returned to a “relaxed” state after experiencing the turbulence of a merging event, the BCG does not move from the cluster’s centre. It is held in place by the enormous gravitational influence of dark matter.

But now, a team of Swiss, French, and British astronomers have analysed ten galaxy clusters observed with the NASA/ESA Hubble Space Telescope, and found that their BCGs are not fixed at the centre as expected.

The Hubble data indicate that they are “wobbling” around the centre of mass of each cluster long after the galaxy cluster has returned to a relaxed state following a merger. In other words, the centre of the visible parts of each galaxy cluster and the centre of the total mass of the cluster — including its dark matter halo — are offset, by as much as 40,000 light-years.

“We found that the BCGs wobble around centre of the halos,” explains David Harvey, astronomer at EPFL, Switzerland, and lead author of the paper. “This indicates that, rather than a dense region in the centre of the galaxy cluster, as predicted by the cold dark matter model, there is a much shallower central density. This is a striking signal of exotic forms of dark matter right at the heart of galaxy clusters.”

The wobbling of the BCGs could only be analysed as the galaxy clusters studied also act as gravitational lenses. They are so massive that they warp spacetime enough to distort light from more distant objects behind them. This effect, called strong gravitational lensing, can be used to make a map of the dark matter associated with the cluster, enabling astronomers to work out the exact position of the centre of mass and then measure the offset of the BCG from this centre.

If this “wobbling” is not an unknown astrophysical phenomenon and in fact the result of the behaviour of dark matter, then it is inconsistent with the standard model of dark matter and can only be explained if dark matter particles can interact with each other — a strong contradiction to the current understanding of dark matter. This may indicate that new fundamental physics is required to solve the mystery of dark matter.

Co-author Frederic Courbin, also at EPFL, concludes: “We’re looking forward to larger surveys — such as the Euclid survey — that will extend our dataset. Then we can determine whether the wobbling of BGCs is the result of a novel astrophysical phenomenon or new fundamental physics. Both of which would be exciting!”

Solar Research On The Sun’s Chromosphere

At any given moment, as many as 10 million wild snakes of solar material leap from the Sun’s surface. These are spicules, and despite their abundance, scientists didn’t understand how these jets of plasma form nor did they influence the heating of the outer layers of the Sun’s atmosphere or the solar wind. Now, for the first time, in a study partly funded by NASA, scientists have modeled spicule formation.

For the first time, a scientific team has revealed their nature by combining simulations and images taken with the NASA’s IRIS spectrograph and the Swedish Solar Telescope of the Roque de los Muchachos Observatory (Garafía, La Palma). The study, led by Dr. Juan Martinez-Sykora, researcher at Lockheed Martin’s Solar and Astrophysics Laboratory (California, USA) and astrophysicist at the University of La Laguna (ULL), is published today in the journal Science.

The observations were made with IRIS (NASA’s Interface Region Imaging Spectrograph), a 20 cm ultraviolet space telescope with a spectrograph able to observe details of about 240 km, and the Swedish Solar Telescope, located at the Roque de los Muchachos Observatory. This spacecraft and the ground-based telescope study the lower layers of the solar atmosphere, where the spicules form: chromosphere and the region of transition

In addition to the images, they used computer simulations whose code was developed for almost a decade. “In our research,” says Prof. Bart De Pontieu, also author of the study, “both go hand in hand. “We compare observations and models to figure out how well our models are performing, as well as how we should interpret our space-based observations.”

Their model is based in the dynamics of plasma – the hot gas of charged particles that streams along magnetic fields and constitutes the Sun. Earlier versions of the model treated the interface region as a uniform, or completely charged, plasma, but the scientists knew something was missing because they never saw spicules in the simulations.

The model they generated is based on plasma dynamics, a very hot partially ionized gas flowing along the magnetic fields. Previous versions considered the lower atmosphere to be a uniform or fully charged plasma, but they suspected something was missing since they never detected spikes in the simulations.

The key, the scientists realized, was neutral particles. They were inspired by Earth’s own ionosphere, a region of the upper atmosphere where interactions between neutral and charged particles are responsible for numerous dynamic processes. In cooler regions of the Sun, such as the interface region, plasma isn’t actually uniform. Some particles are still neutral, and neutral particles aren’t subject to magnetic fields like charged particles are. Scientists based previous models on a uniform plasma in order to simplify the problem – modeling is computationally expensive, and the final model took roughly a year to run with NASA’s supercomputing resources – but they realized neutral particles are a necessary piece of the puzzle.

“Usually magnetic fields are tightly coupled to charged particles,” said Juan Martínez-Sykora, lead author of the study and a solar physicist at Lockheed Martin. “With only charged particles in the model, the magnetic fields were stuck, and couldn’t rise to the surface. When we added neutrals, the magnetic fields could move more freely.”

Neutral particles facilitate the buoyancy the marled knots of magnetic energy need to rise through the boiling plasma and reach the surface. There, they snap producing spicules, releasing both plasma and energy. The simulations closely matched the observations; spicules occurred naturally and frequently.

“This result is a clear example of the breakthrough that can be achieved by combining powerful theoretical-numerical methods, state-of-the-art observations and supercomputing tools to better understand astrophysical phenomena,” explains Prof.Fernando Moreno-Insertis, solar physicist at IAC, Professor ar the ULL and supervisor of the work Diploma of Advanced Studies (DEA) of Juan Martínez-Sykora. “The great complexity of many of the phenomena that occur in the solar atmosphere forces us to consider at the same time the dynamics of partially ionized gas, the magnetic field and the radiation-matter interaction in order to be able to explain them satisfactorily.”

“This result is a clear example of the breakthroughs that can be achieved by combining powerful theoretical-numerical methods, state-of-the-art observations and supercomputing tools to better understand astrophysical phenomena,” explains Fernando Moreno-Insertis, solar physicist at IAC, Professor at the ULL and supervisor of the DEA thesis (equivalent to a master´s thesis) of Juan Martínez-Sykora. “The great complexity of many of the phenomena that occur in the solar atmosphere forces us to consider at the same time the dynamics of partially ionized gas, the magnetic field and the radiation-matter interaction in order to be able to explain them satisfactorily.”

The scientists’ updated model revealed something about solar energy transport as well. It turns out the energy in this whip-like process is high enough to generate Alfvén waves, a strong kind of wave scientists suspect is key to heating the Sun’s atmosphere and propelling the solar wind, which constantly bathes the solar system with charged particles from the Sun.

The National Academy of Sciences awarded Prof. Mats Carlsson and Prof. Viggo H. Hansteen, both developers of the model and authors of the study, with the 2017 Arctowski Medal in recognition of their contributions to the study of solar physics and the Sun-Earth connection. Juan Martínez-Sykora included the effects produced by the presence of the neutral particles.

A Solar Flare Recorded From Spain In 1886

Satellites have detected powerful solar flares in the last two months, but this phenomenon has been recorded for over a century. On 10 September 1886, at the age of just 17, a young amateur astronomer using a modest telescope observed from Madrid one of these sudden flashes in a sunspot. He wrote about what he saw, drew a picture of it, and published the data in a French scientific journal. This is what researchers from the Instituto de Astrofísica de Canarias and the Universidad de Extremadura have recently found.

“A huge, beautiful sunspot was formed from yesterday to today. It is elongated due to its proximity to the limb … by looking at it carefully I noticed an extraordinary phenomenon on her, on the penumbra to the west of the nucleus, and almost in contact with it, a very bright object was distinguishable producing a shadow clearly visible on the sunspot penumbra. This object had an almost circular shape, and a light beam came out from its eastern part that crossed the sunspot to the south of the nucleus, producing a shadow on the penumbra that was lost in the large mass of faculae surrounding the eastern extreme of the sunspot.”

In these words, Juan Valderrama y Aguilar, a 17-year-old amateur astronomer, described what he saw from Madrid on 10 September 1886 with his small telescope, with an aperture of just 6.6 cm and equipped with a neutral density filter to dim the solar light. The young man wrote down the details of his observations, made a drawing of the bright flash he had seen coming from the sunspot, and sent all the information to the French journal L’Astronomie, which did not hesitate to publish it.

“The case of Valderrama is very unique, as he was the only person in the world more than a century ago to observe a relatively rare phenomenon: a white-light solar flare. And until now no one had realised,” explains José Manuel Vaquero, a lecturer at the University of Extremadura and co-author of an article about the event, now being published in the journal Solar Physics, to Sinc.

A flare is a sudden increase in the brightness of a region of the sun’s atmosphere. It occurs in the outermost layers (chromosphere and corona) when the configuration of the magnetic field changes and releases energy, which can be detected in several bands of the electromagnetic spectrum as visible or ultraviolet light, although they are most commonly recorded in X-rays.

During the last two months, several of these powerful solar flares have been observed, some with associated coronal mass ejections that, in turn, can produce geomagnetic storms that perturb the communication systems in some regions of Earth, especially radio broadcasts and GPS systems.

“White-light flares correspond to the most extreme cases of this phenomenon, where so much energy is dumped into the chromosphere and corona that the energy propagates downward to the photosphere, heating it up, and producing the excess brightness that we observe in white light,” according to another of the authors, Jorge Sánchez Almeida, of the Instituto de Astrofísica de Canarias (IAC).

Scientists studying solar flares employ special satellites and instruments that do not operate with visible light, but a white-light flare can be observed with ‘normal’ telescopes that use visible light, as Valderrama y Aguilar did in 1886. “It is extraordinary that in the Spain of the 19th century, a 17-year old kid would make such a scientific discovery, and it is even more impresive that he had the courage of submitting it for publication to a foreing scientific journal,” points out Sánchez Almeida.

“Furthermore, the white-light flare observed by Valderrama is, chronologically, the third one recorded in the history of solar physics,” adds Vaquero. The first solar flare was recorded by British astronomer Richard C. Carrington on 1 September 1859, and the second was described on 13 November 1872 by the Italian Pietro Angelo Secchi. The two flares were widely known in their day, as they sparked a debate on whether or not they could have an impact on Earth.

Much less is known about the life of Valderrama than about the other two pioneers in solar studies. However, Sánchez Almeida, along with fellow IAC researcher and study co-author Manuel Vázquez, will soon publish the biography of this man, who was born in Santa Cruz de Tenerife, spent his adolescence in Madrid and returned to his birth city, where he was the director of the meteorological observatory of the city until his death.

New Theory On Why The Sun’s Corona Is Hotter Than Its Surface

A team of researchers from the U.S., Japan and Switzerland has found possible evidence of a source of energy that could be responsible for heating the sun’s corona. In their paper published in the journal Nature Astronomy, the researchers describe studying data from the FOXSI-2 sounding rocket and what it revealed.

One of the interesting problems in space research is explaining why the sun’s atmosphere (its corona) is so much hotter than its surface. The chief problem standing in the way of an answer is the lack of suitable instruments for measuring what occurs on the sun’s surface and its atmosphere. In this new effort, the researchers used data from the FOXSI-2 sounding rocket (a rocket payload carrying seven telescopes designed to study the sun) to test a theory that suggests heat is injected into the atmosphere by multiple tiny explosions (very small solar flares) on the surface of the sun. Such flares are too small to see with most observational equipment, so the idea has remained just a theory. But now, the new data offers some evidence suggesting the theory is correct.

To test the theory, the researchers looked at X-ray emissions from the corona and found some that were very energetic. This is significant, because solar flares emit X-rays. But the team was studying a part of the sun that had no visible solar flares occurring at the time. This, of course, hinted at another source. The research team suggests the only likely source is superheated plasma that could only have occurred due to nanoflares.
The researchers acknowledge that their findings do not yet solve the coronal heating problem, but they believe they might be getting close. They note that much more research is required—next year, they point out, another sounding rocket will be launched with equipment even more sensitive than that used in the last round, offering better detection of faint X-rays. Also, plans are underway to launch a satellite capable of detecting nanoflares. If future tests can clearly identify the source of the X-rays, the coronal problem may soon be resolved.


The processes that heat the solar and stellar coronae to several million kelvins, compared with the much cooler photosphere (5,800 K for the Sun), are still not well known1. One proposed mechanism is heating via a large number of small, unresolved, impulsive heating events called nanoflares2. Each event would heat and cool quickly, and the average effect would be a broad range of temperatures including a small amount of extremely hot plasma. However, detecting these faint, hot traces in the presence of brighter, cooler emission is observationally challenging. Here we present hard X-ray data from the second flight of the Focusing Optics X-ray Solar Imager (FOXSI-2), which detected emission above 7 keV from an active region of the Sun with no obvious individual X-ray flare emission. Through differential emission measure computations, we ascribe this emission to plasma heated above 10 MK, providing evidence for the existence of solar nanoflares. The quantitative evaluation of the hot plasma strongly constrains the coronal heating models.