BREAKING NEWS: 6.8 Earthquake Hits North Tip of Cascadia Subduction Zone

Three powerful earthquakes struck off the coast of British Columbia Sunday night within an hour. This area sits at the northern end of the Cascadia Subduction Zone which is monitored closely due to its prediction of a cyclical mega-quake.

The United States Geological Survey reports a preliminary magnitude 6.6 earthquake struck near Port Hardy, Canada at 10:39 p.m. local time at a depth of about 7 miles (11 kilometers).

At 11:16 p.m., a magnitude 6.8 earthquake struck the same area at a depth of 13 miles (21 kilometers). At 11:22 p.m. a magnitude 6.5 earthquake struck the same area at a depth of 6 miles (10 kilometers). The U.S. National Tsunami Warning Center reported that a tsunami was not expected.

There was no initial word on damage or injury resulting from the quakes. The earthquakes centered about 355 miles northwest of Seattle. Several smaller quakes followed, including a 4.9-magnitude temblor at 11:36 p.m. PDT.

JUST IN: Cosmic Ray Particles That Tunnel through Earth

A fountain of high-energy particles that resembles an upside-down cosmic-ray shower is detected for the second time by the Antarctic Impulsive Transient Antenna (ANITA).

ANITA detected an unexpected signal – radio waves coming from the ice with an inverted phase. The detection suggest the signals came from upward-moving particles that tunneled through Earth before erupting from the ice.

In a paper published in the journal American Geophysical Union (AGU) Space Weather, associate professor Nathan Schwadron of the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and the department of physics says that due to this solar cycles vast drop in solar activity, a stream of cosmic ray particles are flooding Earth’s atmosphere – and further driving in and through Earth’s core.

In addition to a lower solar minimum cycle, Earth’s magnetic field continues to weaken which also allows a greater number of cosmic particles to enter our atmosphere. Some cosmic charged particles known as Ultra High Energy Cosmic Rays (UHECR) are millions of times greater in kinetic energy than cosmic rays. These powerful particles plow right through Earth’s upper and lower mantle, into the outer and inner core.

My research suggest the radiation of these particles has a significant influence on Earth’s core by increasing temperatures. As a natural result, Earth compensates to maintain its ambient temperature. This is done by sweating. Just as us humans sweat through our pores to manage an overheated body, the Earth sweats by releasing magma through its pores known as ‘mantle plumes’.

More Coming Later…

 

Orionids 2018 Meteor Shower Peaking Overnight Tonight

The Orionids meteor shower will peak overnight from Sunday, Oct. 21 to Monday, Oct. 22. The meteor shower, which will produce between 15 to 20 meteors per hour, is best seen between 2-5 a.m. The origin of the Orionids shower comes from Halley’s comet as it returns to our inner solar system.

Peaking during mid-October, the Orionids are considered one of the most beautiful showers of the year. Its meteors are fast, traveling at about 148,000 mph and leaving glowing “trains” – incandescent bits of debris in the wake of the meteor – which last for several seconds to minutes, according to NASA.

The shower’s radiant – or the point in the sky from which the Orionids appear to come from – is the constellation Orion but NASA said don’t limit your viewing to only that area. The Orionids should be visible throughout the night sky.

If you miss the Orionids, don’t fret. The Leonids meteor shower will peak on Nov. 17.

 

Antarctic Ice Shelf ‘Sings’ As Winds Whip Across Its Surface

Winds blowing across snow dunes on Antarctica’s Ross Ice Shelf cause the massive ice slab’s surface to vibrate, producing a near-constant set of seismic “tones” scientists could potentially use to monitor changes in the ice shelf from afar, according to new research.

The Ross Ice Shelf is Antarctica’s largest ice shelf, a Texas-sized plate of glacial ice fed from the icy continent’s interior that floats atop the Southern Ocean. The ice shelf buttresses adjacent ice sheets on Antarctica’s mainland, impeding ice flow from land into water, like a cork in a bottle.

When ice shelves collapse, ice can flow faster from land into the sea, which can raise sea levels. Ice shelves all over Antarctica have been thinning, and in some cases breaking up or retreating, due to rising ocean and air temperatures. Prior observations have shown that Antarctic ice shelves can collapse suddenly and without obvious warning signs, which happened when the Larsen B ice shelf on the Antarctic Peninsula abruptly collapsed in 2002.

To better understand the physical properties of the Ross Ice Shelf, researchers buried 34 extremely sensitive seismic sensors under its snowy surface. The sensors allowed the researchers to monitor the ice shelf’s vibrations and study its structure and movements for over two years, from late 2014 to early 2017.

Ice shelves are covered in thick blankets of snow, often several meters deep, that are topped with massive snow dunes, like sand dunes in a desert. This snow layer acts like a fur coat for the underlying ice, insulating the ice below from heating and even melting when temperatures rise.

When the researchers started analyzing seismic data on the Ross Ice Shelf, they noticed something odd: Its fur coat was almost constantly vibrating.

When they looked closer at the data, they discovered winds whipping across the massive snow dunes caused the ice sheet’s snow covering to rumble, like the pounding of a colossal drum (see: https://youtu.be/w56RxaX9THY).

They also noticed the pitch of this seismic hum changed when weather conditions altered the snow layer’s surface. They found the ice vibrated at different frequencies when strong storms rearranged the snow dunes or when the air temperatures at the surface went up or down, which changed how fast seismic waves traveled through the snow.

“It’s kind of like you’re blowing a flute, constantly, on the ice shelf,” said Julien Chaput, a geophysicist and mathematician at Colorado State University in Fort Collins and lead author of the new study published today in Geophysical Research Letters, a journal of the American Geophysical Union.

Just like musicians can change the pitch of a note on a flute by altering which holes air flows through or how fast it flows, weather conditions on the ice shelf can change the frequency of its vibration by altering its dune-like topography, according to Chaput.

“Either you change the velocity of the snow by heating or cooling it, or you change where you blow on the flute, by adding or destroying dunes,” he said. “And that’s essentially the two forcing effects we can observe.”

The hum is too low in frequency to be audible to human ears, but the new findings suggest scientists could use seismic stations to continuously monitor the conditions on ice shelves in near real-time. Studying the vibrations of an ice shelf’s insulating snow jacket could give scientists a sense of how it is responding to changing climate conditions, according to Douglas MacAyeal, a glaciologist at the University of Chicago who was not connected to the new study but wrote a commentary about the findings also published today in Geophysical Research Letters.

Changes to the ice shelf’s seismic hum could indicate whether melt ponds or cracks in the ice are forming that might indicate whether the ice shelf is susceptible to breaking up.

“The response of the ice shelf tells us that we can track extremely sensitive details about it,” Chaput said. “Basically, what we have on our hands is a tool to monitor the environment, really. And its impact on the ice shelf.”

Hurricane Michael: Death Toll Continues To Rise Amid Searches

Areas of the US devastated by Hurricane Michael last week are continuing to count the storm’s cost as the number of confirmed dead rises.

At least 27 deaths have been blamed on the hurricane across four US states – a number expected to increase further.

A volunteer organisation has said it is trying to find more than 1,100 people believed to be unaccounted for.

The storm destroyed buildings and flattened communities as it tore through the Florida panhandle region.

Most of the missing are said to be in Panama City and are elderly, disabled or live alone, co-founder of Houston-based CrowdSource Rescue Matthew Marchetti told the Reuters news agency.

That number has not been confirmed by regional officials, and the Florida Department of Health has created an online form for people to report friends and loved ones missing.

US President Donald Trump and First Lady Melania visited the storm-affected region in Florida and Georgia on Monday.

As of Wednesday morning, more than 150,000 homes and businesses were still reported to be without power.

There were also reports of armed looting of homes and businesses in some areas.

A major at Bay County’s Sheriff’s office, Jimmy Stanford, said that local police there had arrested about 10 suspected looters every night since Friday.

Kin Of Gravitational Wave Source Discovered

On October 16, 2017, an international group of astronomers and physicists excitedly reported the first simultaneous detection of light and gravitational waves from the same source — a merger of two neutron stars. Now, a team that includes several University of Maryland astronomers has identified a direct relative of that historic event.

The newly described object, named GRB150101B, was reported as a gamma-ray burst localized by NASA’s Neil Gehrels Swift Observatory in 2015. Follow-up observations by NASA’s Chandra X-ray Observatory, the Hubble Space Telescope (HST) and the Discovery Channel Telescope (DCT) suggest that GRB150101B shares remarkable similarities with the neutron star merger, named GW170817, discovered by the Laser Interferometer Gravitational-wave Observatory (LIGO) and observed by multiple light-gathering telescopes in 2017.

A new study suggests that these two separate objects may, in fact, be directly related. The results were published on October 16, 2018 in the journal Nature Communications.

“It’s a big step to go from one detected object to two,” said study lead author Eleonora Troja, an associate research scientist in the UMD Department of Astronomy with a joint appointment at NASA’s Goddard Space Flight Center. “Our discovery tells us that events like GW170817 and GRB150101B could represent a whole new class of erupting objects that turn on and off — and might actually be relatively common.”

Troja and her colleagues suspect that both GRB150101B and GW170817 were produced by the same type of event: a merger of two neutron stars. These catastrophic coalescences each generated a narrow jet, or beam, of high-energy particles. The jets each produced a short, intense gamma-ray burst (GRB) — a powerful flash that lasts only a few seconds. GW170817 also created ripples in space-time called gravitational waves, suggesting that this might be a common feature of neutron star mergers.

The apparent match between GRB150101B and GW170817 is striking: both produced an unusually faint and short-lived gamma ray burst and both were a source of bright, blue optical light and long-lasting X-ray emission. The host galaxies are also remarkably similar, based on HST and DCT observations. Both are bright elliptical galaxies with a population of stars a few billion years old that display no evidence of new star formation.

“We have a case of cosmic look-alikes,” said study co-author Geoffrey Ryan, a postdoctoral researcher in the UMD Department of Astronomy and a fellow of the Joint Space-Science Institute. “They look the same, act the same and come from similar neighborhoods, so the simplest explanation is that they are from the same family of objects.”

In the cases of both GRB150101B and GW170817, the explosion was likely viewed “off-axis,” that is, with the jet not pointing directly towards Earth. So far, these events are the only two off-axis short GRBs that astronomers have identified.

The optical emission from GRB150101B is largely in the blue portion of the spectrum, providing an important clue that this event is another kilonova, as seen in GW170817. A kilonova is a luminous flash of radioactive light that produces large quantities of important elements like silver, gold, platinum and uranium.

While there are many commonalities between GRB150101B and GW170817, there are two very important differences. One is their location: GW170817 is relatively close, at about 130 million light years from Earth, while GRB150101B lies about 1.7 billion light years away.

The second important difference is that, unlike GW170817, gravitational wave data does not exist for GRB150101B. Without this information, the team cannot calculate the masses of the two objects that merged. It is possible that the event resulted from the merger of a black hole and a neutron star, rather than two neutron stars.

“Surely it’s only a matter of time before another event like GW170817 will provide both gravitational wave data and electromagnetic imagery. If the next such observation reveals a merger between a neutron star and a black hole, that would be truly groundbreaking,” said study co-author Alexander Kutyrev, an associate research scientist in the UMD Department of Astronomy with a joint appointment at NASA’s Goddard Space Flight Center. “Our latest observations give us renewed hope that we’ll see such an event before too long.”

It is possible that a few mergers like the ones seen in GW170817 and GRB150101B have been detected previously, but were not properly identified using complementary observations in different wavelengths of light, according to the researchers. Without such detections — in particular, at longer wavelengths such as X-rays or optical light — it is very difficult to determine the precise location of events that produce gamma-ray bursts.

In the case of GRB150101B, astronomers first thought that the event might coincide with an X-ray source detected by Swift in the center of the galaxy. The most likely explanation for such a source would be a supermassive black hole devouring gas and dust. However, follow-up observations with Chandra placed the event further away from the center of the host galaxy.

According to the researchers, even if LIGO had been operational in early 2015, it would very likely not have detected gravitational waves from GRB150101B because of the event’s greater distance from Earth. All the same, every new event observed with both LIGO and multiple light-gathering telescopes will add important new pieces to the puzzle.

“Every new observation helps us learn better how to identify kilonovae with spectral fingerprints: silver creates a blue color, whereas gold and platinum add a shade of red, for example,” Troja added. “We’ve been able identify this kilonova without gravitational wave data, so maybe in the future, we’ll even be able to do this without directly observing a gamma-ray burst.”

Astronomers Find A Cosmic Titan In The Early Universe

An international team of astronomers has discovered a titanic structure in the early Universe, just two billion years after the Big Bang. This galaxy proto-supercluster, nicknamed Hyperion, is the largest and most massive structure yet found at such a remote time and distance.

The team that made the discovery was led by Olga Cucciati of Istituto Nazionale di Astrofisica (INAF) Bologna, Italy and project scientist Brian Lemaux in the Department of Physics, College of Letters and Science at the University of California, Davis, and included Lori Lubin, professor of physics at UC Davis. They used the VIMOSinstrument on ESO’s Very Large Telescope in Paranal, Chile to identify a gigantic proto-supercluster of galaxies forming in the early Universe, just 2.3 billion years after the Big Bang.

Hyperion is the largest and most massive structure to be found so early in the formation of the Universe, with a calculated mass more than one million billion times that of the Sun. This enormous mass is similar to that of the largest structures observed in the Universe today, but finding such a massive object in the early Universe surprised astronomers.

“This is the first time that such a large structure has been identified at such a high redshift, just over 2 billion years after the Big Bang,” Cucciati said. “Normally these kinds of structures are known at lower redshifts, which means when the Universe has had much more time to evolve and construct such huge things. It was a surprise to see something this evolved when the Universe was relatively young.”

Supercluster mapped in three dimensions

Located in the constellation of Sextans (The Sextant), Hyperion was identified by a novel technique developed at UC Davis to analyze the vast amount of data obtained from the VIMOS Ultra-Deep Survey led by Olivier Le Fèvre from Laboratoire d’Astrophysique de Marseille, Centre National de la Recherche Scientifique and Centre National d’Etudes Spatiales. The VIMOS instrument can measure the distance to hundreds of galaxies at the same time, making it possible to map the position of galaxies within the forming supercluster in three dimensions.

The team found that Hyperion has a very complex structure, containing at least seven high-density regions connected by filaments of galaxies, and its size is comparable to superclusters closer to Earth, though it has a very different structure.

“Superclusters closer to Earth tend to a much more concentrated distribution of mass with clear structural features,” Lemaux said. “But in Hyperion, the mass is distributed much more uniformly in a series of connected blobs, populated by loose associations of galaxies.”

The researchers are comparing the Hyperion findings with results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) survey, led by Lubin. The ORELSE survey uses telescopes at the W.M. Keck Observatory in Hawaii to study superclusters closer to Earth. Lubin and Lemaux are also using the Keck observatory to map out Hyperion and similar structures more completely.

The contrast between Hyperion and less distant superclusters is most likely due to the fact that nearby superclusters have had billions of years for gravity to gather matter together into denser regions — a process that has been acting for far less time in the much younger Hyperion.

Given its size so early in the history of the Universe, Hyperion is expected to evolve into something similar to the immense structures in the local Universe such as the superclusters making up the Sloan Great Wall or the Virgo Supercluster that contains our own galaxy, the Milky Way.

“Understanding Hyperion and how it compares to similar recent structures can give insights into how the Universe developed in the past and will evolve into the future, and allows us the opportunity to challenge some models of supercluster formation,” Cucciati said. “Unearthing this cosmic titan helps uncover the history of these large-scale structures.”