Part-III Addendum to (First Will Come Reversal Excursions Then the Flip)

The episodic nature of the Earth’s glacial and interglacial periods within the present Ice Age (the last couple of million years) have been caused primarily by cyclical changes in the Earth’s circumnavigation of the Sun. Variations in the Earth’s eccentricity, axial tilt, and precession comprise the three dominant cycles, collectively known as the Milankovitch Cycles for Milutin Milankovitch, the Serbian astronomer and mathematician who is generally credited with calculating their magnitude. Taken in unison, variations in these three cycles creates alterations in the seasonality of solar radiation reaching the Earth’s surface. These times of increased or decreased solar radiation directly influence the Earth’s climate system, thus impacting the advance and retreat of Earth’s glaciers.

Note: If you find this information of interest and useful, please consider supporting us with your donations. I am also looking for a sponsors that would help caring this important research forward. Go to the click here button to support this work.    CLICK HERE

The first of the three Milankovitch Cycles is Earth’s axial tilt. It is the inclination of the Earth’s axis in relation to its plane of orbit around the Sun. Oscillations in the degree of Earth’s axial tilt occur on a periodicity of 41,000 years from 21.5 to 24.5 degrees. Today the Earth’s axial tilt is about 23.5 degrees, which largely accounts for our seasons.  Because of the periodic variations of this angle the severity of the Earth’s seasons changes. With less axial tilt the Sun’s solar radiation is more evenly distributed between winter and summer. However, less tilt also increases the difference in radiation receipts between the equatorial and Polar Regions.

The second principle of the Milankovitch Cycle is Earth’s precession. Precession is the Earth’s slow wobble as it spins on axis. This wobbling of the Earth on its axis can be likened to a top running down, and beginning to wobble back and forth on its axis. The precession of Earth wobbles from pointing at Polaris (North Star) to pointing at the star Vega. When this shift to the axis pointing at Vega occurs, Vega would then be considered the North Star. This top-like wobble, or precession, has a periodicity of 23,000 years.

The third principle of the Milankovitch Cycles is the Earth’s eccentricity. Eccentricity is, simply, the shape of the Earth’s orbit around the Sun. This constantly fluctuating, orbital shape ranges between more and less elliptical (0 to 5% ellipticity) on a cycle of about 100,000 years. These oscillations, from more elliptic to less elliptic, are of prime importance to glaciation in that it alters the distance from the Earth to the Sun, thus changing the distance the Sun’s short wave radiation must travel to reach Earth, subsequently reducing or increasing the amount of radiation received at the Earth’s surface in different seasons.

Part III – First Will Come Reversal Excursions Then the Flip

A geomagnetic excursion, like a geomagnetic reversal, is a significant change in the Earth’s magnetic field. However, excursions are not strong enough to permanently change the large-scale orientation of the field, but rather hopscotch back and forth northern latitudes. They are usually short-lived decreasing in field intensity, with a variation in pole orientation of up to 45 degrees from the previous position. These events often involve declines in field strength to between 5% and 20% of normal.

Excursions, unlike reversals, are generally not recorded across the entire globe. This is partially due to them not being recorded well within the sedimentary record, but also because they likely do not extend through the entire geomagnetic field. One of the first excursions to be studied was the Laschamp event, dated at around 40,000 years ago. Since this event has also been seen in sites across the globe, it is suggested as one of the few examples of a truly global excursion.

Excursions are less likely to leave evidence that is identifiable in geological records – they can easily be too small to be noticed. Consequently scientists are unsure how frequently they occur. So far 12 have been documented as occurring in the last 780,000 years, which means they happen (on average) at least every 65,000 years.

The Laschamp event was a short reversal of the Earth’s magnetic field. It occurred 41,400 (±2,000) years ago during the last ice age and was first recognized in the late 1960s as a geomagnetic reversal recorded in the Laschamp lava flows in the Clermont-Ferrand district of France. The magnetic excursion has since been demonstrated in geological archives from many parts of the world.

The period of reversed magnetic field was approximately 440 years, with the transition from the normal field lasting approximately 250 years. The reversed field was 75% weaker, whereas the strength dropped to only 5% of the current strength during the transition. This reduction in geomagnetic field strength resulted in more cosmic rays reaching the Earth, causing greater production of the cosmogenic isotopes beryllium 10 and carbon 14. The Laschamp event was the first known geomagnetic excursion and remains the most thoroughly studied among the known geomagnetic excursions.

Coming Next: Part IV – How Geomagnetic Expansion or Contraction Effects Animals and Humans

Part II – New Findings Show a Closer Connection Between Galactic Cosmic Rays, Our Solar System, and Milky Way

Just as the Earth and other planets rotate around our Sun, our solar system has a rotation trajectory around our galaxy Milky Way. And I must say…before I leave this plane of existence, I feel confident future research will show our galaxy, along with neighboring galaxies, will also have a periodicity rotation with cyclical parameters…rotating around what is yet to be discovered.

The Earth is regularly exposed to cosmic rays as it oscillates upward through the galactic disc. Every 60 million years or so, astronomers believe that our Sun and planets cycle northward in the galactic plane. Just as the Earth has her magnetic field, Milky Way has its own. Without the galactic plane’s magnetic field shielding our solar system, we would be at even higher risk of radiation exposure. It is hypnotized that the closer our solar system travels to the galactic center, we note a correlation between this cyclical motion and partial to mass extinctions happening with a fair amount of regularity on Earth over the past 500 million years.

Some scientists have surmised we are in the midst of a sixth mass extinction of plants and animals. An assemblage of researchers have noted the cycle we are currently experiencing may be a high ratio of species die-offs since. Although extinction is a natural phenomenon, it occurs at a natural “background” rate of about one to five species per year. Scientists estimate we’re now losing species at 1,000 to 10,000 times the background rate. However, to keep things in perspective – researchers currently know of about 1.2 million species to be recorded by science. What’s left to be discovered however is very interesting. The number of species that scientists think are left to be discovered is around 8.7 million. Still, new discoveries can change a scenario, and so can the numbers.

I have re-written this article and ones coming 3 or 4 times because of its importance. Some of you might remember an importance decision I made concerning the direction of my research. I had such a strong pull to go beyond the study of our Sun-Earth connection and peeking around the corner to see what’s next. What I hope to show you is that I am finding a very similar pattern of cause and effect, symbiotic relationship between each level of co-existence. I hope you agree and perhaps catch a flavor of my enthusiastic venturous demeanor. If so, pledge your donation to match renewed devotion to this work. If you happen to know Bill Gates, or his neighbor, give him a call.

Coming Next: Part III – First Will Come Reversal Excursions Then the Flip

BREAKING NEWS: PART-I Galactic Cosmic Rays Reaching Levels Never Before Seen

Today’s article will come as no surprise to the Science Of Cycles reader. There have been several articles SOC published regarding this issue going back to 2012. One of the highly contested questions regarding the pole shift is…’where’ on the time line of this cycle do we stand. I had addressed this question in previous articles. A significant and conveying influence to the makings of a magnetic pole reversal is the inundation of galactic cosmic rays, often referred to as ‘cosmic rays’.

NASA’s most recent study on galactic cosmic ray levels reaching Earth’s atmosphere are the highest ever reported. It is of no coincidence today’s GCR levels correspond with one of the lowest solar minimums observed. This is compounded by the Earth’s magnetic field weakening at a rate nobody saw coming. Researchers estimated the field was weakening about 5 percent per ‘century’, but new data revealed the field is actually weakening at 5 percent per ‘decade’, or 10 times faster than thought.

These GCRs are made up of high energy electrons, positrons, and other subatomic particles, which originate in sources outside the solar system and distributed throughout our galaxy Milky Way; hence the name ‘galactic cosmic rays’. Although periods of high solar activity such as solar flares, CMEs (coronal mass ejections) and coronal holes (solar winds) play a significant role in space and earth weather (including various natural phenomenon such as earthquakes, volcanoes, hurricanes and extreme weather) – studies indicate the periods of solar maximum are usually short-lived hovering around the 11 year cycle.

I propose that both solar rays and cosmic rays have an effect on Earth’s atmosphere, mantle, outer and inner core by generating the expansion and contraction of fluids and gas. Additionally, I suggest it is the more powerful highly energetic charged particles racing at nearly the speed of light which has the greater influence to Earth and all living things. It is the radiation from GCRs which can have – a yet to be determined minimal-or-significant measured effect on all forms of life. I would postulate the most sensitive species exposed to increasing radiation would be the most vulnerable – and in fact a significant number has already reached a point of extinction.

Coming Next: Part-II An Understanding of ‘Background’ and ‘Mass’ Extinctions (and why it applies to today’s galactic cosmic rays escalation.)

_______________

Science Of Cycles keeps you tuned-in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

3-D Earth In The Making

A thorough understanding of the ‘solid Earth’ system is essential for deciphering the links between processes occurring deep inside Earth and those occurring nearer the surface that lead to seismic activity such as earthquakes and volcanic eruptions, the rise of mountains and the location of underground natural resources. Thanks to gravity and magnetic data from satellites along with seismology, scientists are on the way to modelling inner Earth in 3-D.

Solid Earth refers to the crust, mantle and core. Because these parts of our world are completely hidden from view, understanding what is going on deep below our feet can only be done by using indirect measurements.

New results, based on a paper published recently in Geophysical Journal International and presented at this week’s Living Planet Symposium, reveal how scientists are using a range of different measurements including satellite data along with seismological models to start producing a global 3-D Earth reference model.

The model will make a step change in being able to analyze Earth’s lithosphere, which is the rigid outer shell, and the underlying mantle to understand the link between Earth’s structure and the dynamic processes within.

Juan Carlos Afonso, from Australia’s Macquarie University and Norway’s Centre for Earth Evolution and Dynamics, said, “We are realising the new global model of Earth’s lithosphere and upper mantle by combining gravity anomalies, geoid height, and gravity gradients complemented with seismic, thermal, and rock information.”

Wolfgang Szwillus from Kiel University, added, “Data from ESA’s GOCE satellite mission served as input for the inversion. It is the first time that gravity gradients have been inverted on a global scale in such an integrated framework.”

While this is just a first step, 3-D Earth offers tantalizing insights into the deep structure of our world. For example, the new models of the thickness of the crust and the lithosphere are important for unexplored continents like Antarctica.

Jörg Ebbing from Kiel University, noted, “This is just a first step so we have more work to do, but we plan to release the 3-D Earth models in 2020.”

The 3-D Earth research, which involves scientists from nine institutes in six European countries, is funded through ESA’s Science for Society programme. ESA’s GOCE gravity mission and Swarm magnetic field mission are key to this research.

Bermuda Volcano Formed In a Way That Has Never Been Seen Anywhere Else On Earth

A volcano beneath Bermuda formed in a way that has never been seen before, scientists have discovered. The volcano appears to have been created by material rising up from a region deep beneath Earth’s surface—the transition zone.

The transition zone is the region between the upper and lower mantle. It extends between 250 and 400 miles beneath the surface of the planet and is rich in water, crystals and melted rock.

Volcanoes normally form when the tectonic plates are pushed together or pulled apart, producing a crack in Earth’s surface where magma can escape. They can also form at “hotspots,” where mantle plumes rise up and melt a hole in the plate—Hawaii is an example of this.

Now, researchers have found volcanoes can also form when material moves up from the transition zone. The team believes there was a disturbance in the transition zone that forced the material in this layer to melt and move up towards the surface. Their findings are published in the journal Nature.

The researchers were analyzing a now dormant volcano beneath the Atlantic Ocean that was responsible for the formation of Bermuda. They were looking at the chemical composition of a 2,600-foot core sample—by understanding its makeup they could build a picture of Bermuda’s volcanic history.

“Before our work, Bermuda has been interpreted as the result of a deep thermal anomaly in the Earth’s mantle, but there was no direct data to support this. This is due to the fact that the volcanic edifice is completely covered by limestone,” Cornell’s Esteban Gazel, one of the study authors, told Newsweek.

In a statement, he said they were expecting to show that the volcano was a mantle plume formation like Hawaii. This was not what they found, however. The measurements taken from the core sample were unlike anything seen before, suggesting the lava came from a previously unidentified source.

The samples contained signatures from the transition zone. Compared to samples taken from subduction zones, there was more water trapped in the crystals. The transition zone is known to contain vast quantities of water—one study calculated there is three times as much water in this region of Earth than is present in all the world’s oceans.

“I first suspected that Bermuda’s volcanic past was special as I sampled the core and noticed the diverse textures and mineralogy preserved in the different lava flows,” lead author Sarah Mazza, from the University of Münster, Germany, said in the statement. “We quickly confirmed extreme enrichments in trace element compositions. It was exciting going over our first results … the mysteries of Bermuda started to unfold.”

Numerical models developed by the team indicate a disturbance in the transition zone forced the material up. This is thought to have taken place about 30 million years ago and provided the foundation that Bermuda sits on today.

“We found a new way to make volcanoes,” Gazel said in the statement. “This is the first time we found a clear indication from the transition zone deep in the Earth’s mantle that volcanoes can form this way.”

The researchers believe there will be other examples of volcanoes being formed in this way. “With this work we can demonstrate that the Earth’s transition zone is an extreme chemical reservoir,” Gazel said. “We are just now beginning to recognize its importance in terms of global geodynamics and even volcanism.”

Speaking to Newsweek, he added: “I think many hotspot locations … are not deeply rooted to the core-mantle boundary probably have past similar to Bermuda’s.”

A Massive ‘Blob’ of Rock Stretching Under Asia Might Be Triggering Hundreds of Earthquakes

The Hindu Kush mountain range — which stretches about 500 miles (800 kilometers) along the border of Afghanistan and Pakistan — shudders with more than 100 earthquakes at a magnitude of 4.0 or greater every year. The area is one of the most seismically active spots in the world, especially for intermediate-depth quakes (tremors forming between 45 and 190 miles, or 70 and 300 km, below the planet’s surface). And yet, scientists aren’t sure why.

The mountains don’t sit on a major fault line, where high earthquake activity is expected, and the region is many miles away from the slow-motion crash zone where the Eurasian and Indian tectonic plates are steadily colliding. So, what’s the deal with this mountain earthquake epidemic?

A new study published April 17 in the journal Tectonics may have an answer to the mystery quakes of the Hindu Kush — and, like all great geologic mysteries, it involves blobs.

According to the study, the Hindu Kush mountains may owe their incredible seismic reputation to a long “blob” of rock slowly dripping away from the range’s subterranean underbelly and into the hot, viscous mantle below. Like a lone water droplet pulling away from the edge of a faucet, the 100-mile-deep (150 km) blob of mountain may be pulling away from the continental crust at a rate as fast as 4 inches (10 centimeters) per year — and this subterranean stress could be triggering earthquakes, the authors of the new study wrote.

The researchers discovered the troublesome blob after collecting several years’ worth of earthquake observations near the Hindu Kush mountains. They saw that the quakes formed in a pattern, creating what looked like a “round patch” of seismic activity on the planet’s surface, study co-author Rebecca Bendick, a geophysicist at the University of Montana in Missoula, told the website Eos.org. Those quakes also formed along a clear vertical axis, beginning between 100 and 140 miles (160 and 230 km) below the continent, and were most common deeper down, where the solid continental crust meets the hot, viscous upper mantle. Here, the researchers wrote, is where the slowly-stretching blob is strained the most.

All of these observations were consistent with a blob of solid rock slowly dripping into the gooey underworld below — a hypothesis that has previously been used to explain similar seismic activity underneath the Carpathian Mountains in central Europe. According to the researchers, the Hindu Kush blob likely began dripping no earlier than 10 million years ago, and continues to stretch downward nearly 10 times faster than the surface of the mountains move, as the Indian and Eurasian plates collide.

If accurate, these results may be more evidence that geophysical forces beyond just the subduction of tectonic plates can send earthquakes rattling through the planet.