Lush Venus? Searing Earth? It Could Have Happened

If conditions had been just a little different an eon ago, there might be plentiful life on Venus and none on Earth.

The idea isn’t so far-fetched, according to a hypothesis by Rice University scientists and their colleagues who published their thoughts on life-sustaining planets, the planets’ histories and the possibility of finding more in Astrobiology this month.


The researchers maintain that minor evolutionary changes could have altered the fates of both Earth and Venus in ways that scientists may soon be able to model through observation of other solar systems, particularly ones in the process of forming, according to Rice Earth scientist Adrian Lenardic.

The paper, he said, includes “a little bit about the philosophy of science as well as the science itself, and about how we might search in the future. It’s a bit of a different spin because we haven’t actually ­­­­done the work, in terms of searching for signs of life outside our solar system, yet. It’s about how we go about doing the work.”

Lenardic and his colleagues suggested that habitable planets may lie outside the “Goldilocks zone” in extra-solar systems, and that planets farther from or closer to their suns than Earth may harbor the conditions necessary for life.

The Goldilocks zone has long been defined as the band of space around a star that is not too warm, not too cold, rocky and with the right conditions for maintaining surface water and a breathable atmosphere. But that description, which to date scientists have only been able to calibrate using observations from our own solar system, may be too limiting, Lenardic said.

“For a long time we’ve been living, effectively, in one experiment, our solar system,” he said, channeling his mentor, the late William Kaula. Kaula is considered the father of space geodetics, a system by which all the properties in a planetary system can be quantified. “Although the paper is about planets, in one way it’s about old issues that scientists have: the balance between chance and necessity, laws and contingencies, strict determinism and probability.

“But in another way, it asks whether, if you could run the experiment again, would it turn out like this solar system or not? For a long time, it was a purely philosophical question. Now that we’re observing solar systems and other planets around other stars, we can ask that as a scientific question.

“If we find a planet (in another solar system) sitting where Venus is that actually has signs of life, we’ll know that what we see in our solar system is not universal,” he said.

In expanding the notion of habitable zones, the researchers determined that life on Earth itself isn’t necessarily a given based on the Goldilocks concept. A nudge this way or that in the conditions that existed early in the planet’s formation may have made it inhospitable.

By extension, a similarly small variation could have changed the fortunes of Venus, Earth’s closest neighbor, preventing it from becoming a burning desert with an atmosphere poisonous to terrestrials.

The paper also questions the idea that plate tectonics is a critical reason Earth harbors life. “There’s debate about this, but the Earth in its earliest lifetimes, let’s say 2-3 billion years ago, would have looked for all intents and purposes like an alien planet,” Lenardic said. “We know the atmosphere was completely different, with no oxygen. There’s a debate that plate tectonics might not have been operative.

“Yet there’s no argument there was life then, even in this different a setting. The Earth itself could have transitioned between planetary states as it evolved. So we have to ask ourselves as we look at other planets, should we rule out an early Earth-like situation even if there’s no sign of oxygen and potentially a tectonic mode distinctly different from the one that operates on our planet at present?

“Habitability is an evolutionary variable,” he said. “Understanding how life and a planet co-evolve is something we need to think about.”

Lenardic is kicking his ideas into action, spending time this summer at conferences with the engineers designing future space telescopes. The right instruments will greatly enhance the ability to find, characterize and build a database of distant solar systems and their planets, and perhaps even find signs of life.

“There are things that are on the horizon that, when I was a student, it was crazy to even think about,” he said. “Our paper is in many ways about imagining, within the laws of physics, chemistry and biology, how things could be over a range of planets, not just the ones we currently have access to. Given that we will have access to more observations, it seems to me we should not limit our imagination as it leads to alternate hypothesis.”


Rice graduate student Matt Weller, now a postdoctoral fellow at the Lunar and Planetary Institute, is a co-author of the paper. Additional co-authors are John Crowley, a geodetic engineer at the Canadian Geodetic Survey of Natural Resources Canada and an adjunct professor in the Department of Earth and Environmental Sciences at the University of Ottawa, and Mark Jellinek, a professor of volcanology, geodynamics, planetary science and geological fluid mechanics at the University of British Columbia.

The National Science Foundation supported the research.

Alma Finds A Swirling, Cool Jet That Reveals A Growing, Supermassive Black Hole

A Chalmers-led team of astronomers have used the Alma telescope to make the surprising discovery of a jet of cool, dense gas in the centre of a galaxy located 70 million light years from Earth. The jet, with its unusual, swirling structure, gives new clues to a long-standing astronomical mystery — how supermassive black holes grow.

galaxy NGC 1377

A team of astronomers led by Susanne Aalto, professor of radio astronomy at Chalmers, has used the Alma telescope (Atacama Large Millimeter/submillimeter Array) to observe a remarkable structure in the centre of the galaxy NGC 1377, located 70 million light years from Earth in the constellation Eridanus (the River). The results are presented in a paper published in the June 2016 issue of the journal Astronomy and Astrophysics.

“We were curious about this galaxy because of its bright, dust-enshrouded centre. What we weren’t expecting was this: a long, narrow jet streaming out from the galaxy nucleus,” says Susanne Aalto.

The observations with Alma reveal a jet which is 500 light years long and less than 60 light years across, travelling at speeds of at least 800,000 kilometres per hour (500,000 miles per hour).

Most galaxies have a supermassive black hole in their centres; these black holes can have masses of between a few million to a billion solar masses. How they grew to be so massive is a long-standing mystery for scientists.

A black hole’s presence can be seen indirectly by telescopes when matter is falling into it — a process which astronomers call “accretion.” Jets of fast-moving material are typical signatures that a black hole is growing by accreting matter. The jet in NGC 1377 reveals the presence of a supermassive black hole. But it has even more to tell us, explains Francesco Costagliola (Chalmers), co-author on the paper.

“The jets we usually see emerging from galaxy nuclei are very narrow tubes of hot plasma. This jet is very different. Instead it’s extremely cool, and its light comes from dense gas composed of molecules,” he says.

The jet has ejected molecular gas equivalent to two million times the mass of the Sun over a period of only around half a million years — a very short time in the life of a galaxy. During this short and dramatic phase in the galaxy’s evolution, its central, supermassive black hole must have grown fast.

“Black holes that cause powerful narrow jets can grow slowly by accreting hot plasma. The black hole in NGC1377, on the other hand, is on a diet of cold gas and dust, and can therefore grow — at least for now — at a much faster rate,” explains team member Jay Gallagher (University of Wisconsin-Madison).

The motion of the gas in the jet also surprised the astronomers. The measurements with Alma are consistent with a jet that is precessing — swirling outwards like water from a garden sprinkler.

“The jet’s unusual swirling could be due to an uneven flow of gas towards the central black hole. Another possibility is that the galaxy’s centre contains two supermassive black holes in orbit around each other,” says Sebastien Muller, Chalmers, also a member of the team.

The discovery of the remarkable cool, swirling jet from the centre of this galaxy would have been impossible without Alma, concludes Susanne Aalto.

“Alma’s unique ability to detect and measure cold gas is revolutionising our understanding of galaxies and their central black holes. In NGC 1377 we’re witnessing a transient stage in a galaxy’s evolution which will help us understand the most rapid and important growth phases of supermassive black holes, and the life cycle of galaxies in the universe,” she says.

Breaking News: Three New Findings Hint to Purpose of Concern

I suggest the purpose of these three studies released yesterday, appear to imply interest in the action of venturing  funnels of charged particles, often referred to as Active Galactic Nuclei or (AGN), heading into our solar systems path. Such an event could cause serious damage to Earth’s ozone layer, which protects us from harmful radiation.

CREATOR: gd-jpeg v1.0 (using IJG JPEG v62), default quality

There is good reason to be concerned of a stream of charged particles produced by a gamma ray burst, supernova, quasar or galactic center black hole AGN. Why? Because it has happened before in near history and no doubt some number of times over vast history. The last event occurred in the year 774-775 A.D.

In this 2012 discovery, scientist Fusa Miyake announced the detection of high levels of the isotope Carbon-14 and Beryllium-10 in tree rings formed in 775 AD, suggesting that a burst of radiation struck the Earth in the year 774 or 775. Carbon-14 and Beryllium-10 form when radiation from space collides with nitrogen atoms, which then decay to these heavier forms of carbon and beryllium.


Lead researcher Dr Ralph Neuhӓuser at Astrophysics Institute of the University of Jena in Germany said: “If the gamma ray burst had been much closer to the Earth it would have caused significant harm to the biosphere. But even thousands of light years away, a similar event today could cause havoc with the sensitive electronic systems that advanced societies have come to depend on. The challenge now is to establish how rare such Carbon-14 spikes are i.e. how often such radiation bursts hit the Earth. In the last 3000 years, the maximum age of trees alive today, only one such event appears to have taken place.”

New study published July 1st 2016 – Scientists from Moscow Institute of Physics and Technology (MIPT), the Institute for Theoretical and Experimental Physics, and the National Research University Higher School of Economics have devised a method of distinguishing black holes from compact massive objects that are externally indistinguishable from one another. The method involves studying the energy spectrum of particles moving in the vicinity — in one case it will be continuous and in the other it will be discrete. The findings have been published in Physical Review D.


Black holes, which were predicted by Einstein’s theory of general relativity, have an event horizon — a boundary beyond which nothing, even light, can return to the outside world. The radius of this boundary is called the Schwarzschild radius, in physical terms it is the radius of an object for which the escape velocity is greater than the speed of light, which means that nothing is able to overcome its gravity.

Astrophysicists have not yet been able to “see” a black hole directly, but there are many objects that are “suspected” of being black holes. Most scientists are sure that in the center of our galaxy there is a supermassive black hole; there are binary systems where one of the components is most likely a black hole. However, some astrophysicists believe that there may be compact massive objects that fall very slightly short of black hole status; their range is only a little larger than the Schwarzschild radius. It may be the case that some of the “suspects” are in fact objects such as these. From the outside, however, they are not distinguishable from black holes.


“We examined the scalar quantum field around a black hole and a compact object and found that around the collapsing object – it is a black hole; explains FedorPopov, of Moscow Institute of Physics and Technology (MIPT), there are no bound states, but around the compact object there are.”

Second article published July 1st 2016 – Some galaxies pump out vast amounts of energy from a very small volume of space, typically not much bigger than our own solar system. The cores of these galaxies, so called Active Galactic Nuclei or AGNs, are often hundreds of millions or even billions of light years away, so are difficult to study in any detail. Natural gravitational ‘microlenses’ can provide a way to probe these objects, and now a team of astronomers have seen hints of the extreme AGN brightness changes that hint at their presence.


The energy output of an AGN is often equivalent to that of a whole galaxy of stars. This is an output so intense that most astronomers believe only gas falling in towards a supermassive black hole – an object with many millions of times the mass of the Sun – can generate it. As the gas spirals towards the black hole it speeds up and forms a disc, which heats up and releases energy before the gas meets its demise.

A research team from the University of Edinburgh, explain if a planet or star in an intervening galaxy passes directly between the Earth and a more distant AGN, over a few years or so they act as a lens, focusing and intensifying the signal coming from near the black hole. This type of lensing, due to a single star, is termed microlensing. As the lensing object travels across the AGN, emitting regions are amplified to an extent that depends on their size, providing astronomers with valuable clues.


There are expected to be fewer than 100 active AGN microlensing events on the sky at any one time, but only some will be at or near their peak brightness. The big hope for the future is the Large Synoptic Survey Telescope (LSST), a project the UK recently joined. From 2019 on, it will survey half the sky every few days, so has the potential to watch the characteristic changes in the appearance of the AGNs as the lensing events take place.

Third study published July 1st 2016 – A study of gravitationally lensed images of four mini-jets of material ejected from a central supermassive black hole has revealed the structure of these distant galaxies in unprecedented detail. This has enabled astronomers to trace particle emissions to a very small region at the heart of the quasars, and helped to solve a 50-year-old puzzle about their source. The results will be presented by Dr Neal Jackson at the National Astronomy Meeting in Nottingham on Friday, 1st July.


“In radio-loud quasars, the intense radio emission clearly comes from vast jets of material blasted out from the region around a central black hole. By contrast, the radio emission from radio-quiet quasars is extremely feeble and difficult to see, so it has been hard to identify its source,” explained Jackson of the Jodrell Bank Center for Astrophysics in Manchester. “To study most radio-quiet quasars, we will have to wait until future extremely large telescopes, like the Square Kilometer Array, come online. However, if we find radio-quiet quasars which are lensed by galaxies in front of them, we can use the increased brightness to be able to study them with today’s radio telescopes.”


_new_equation 2012

Time is Running Out….. Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive from our news service.

If above banner does not work – CLICK HERE


JUST IN: Released Today, New Finding May Play Integral Role for Monitoring Earth’s Magnetic Flip

This is not the first time of such a rapid new discovery is published within days of an article I produced outlining my hypothesis and what is likely to come next.  Just two days ago I sent out my article titled New Study Reinforces Cyclical Magnetic Pole Reversals telling of the various descriptive patterns which have been shown to fit short and long term reversal cycles.

earth-magnetic-field-neutron field-diagram5

In an upcoming article later this week, I will describe signs and symptoms during the process of a full magnetic reversal which fits the pattern of historic cycles over what would be described as a ‘moderate’ time period, geologically speaking, covering a few hundred thousand years. There is also a longer term cycle which covers a few million years; however, there is also a short term cycle which occurs approximately every 40,000 years.

Snapshots spaced about 2 kyr apart during a rapid magnetic polarity reversal from a numerical dynamo. Top sequence shows the evolution of the intensity of the radial component of the magnetic field on the core-mantle boundary (CMB). Red contours indicate radially outward-directed magnetic field; blue contours indicate radially inward-directed magnetic field, with continental outlines shown for reference. Middle two sequences show the evolution of magnetic field lines within the core, color-coded according to their polarity (i.e., orientation) in the equatorial plane, with northward oriented magnetic field indicated by blue-colored field lines, and magnetic field pointing toward the south indicated by red-colored field lines. The bottom sequence shows the major vortices in the outer core, with red indicating positive (cyclonic) and blue indicating negative (anticyclonic) vorticity, respectively. Credit: Peter Olson – Johns Hopkins University

What I believe to be one of the most important questions, or should be, where in this current cycle are we today? My research covering the galaxy-sun-solar system connection which involves the discovery of various term cyclical events, suggests we are far along the process with just a few decades away from a significant excursion or full reversal.

I would suggest we are deep into the cycle, and perhaps far enough along to witness (and sense) magnetic north bouncing around the northern hemisphere above 60° latitude and swing down between 30° east and 30° west longitudes. Perhaps a most intriguing thought, is the idea that many of you are young enough to witness a phase of pronounced swings in both latitude and longitude within the next 50-60 years.

Mitch Battros 2012 Equation

In today’s news, the discovery of two massive mantle plumes, residing on opposite sides of our planet. They sit next to or directly on the inner core approximately 1,800 miles (2,896 km) deep. This would be just the type of massive plume which could create a wobble as it goes through its natural process of convection.

Arizona State University scientists Edward Garnero, Allen McNamara and Sang-Heon (Dan) Shim, of the School of Earth and Space Exploration head up the team, and their work appears in the June issue of Nature Geoscience. “We believe our finding will help explain the plumbing that leads to some massive volcanic eruptions, as well as the mechanism of plate tectonics from the convection, or stirring, of the mantle. This is the geo-force that drives earthquakes.


Earth is layered like an onion, with a thin outer crust, a thick viscous mantle, a fluid outer core and a solid inner core. The two plumes sit in the mantle on top of Earth’s core, under the Pacific Ocean on one side and beneath Africa and the Atlantic Ocean on the other.

Waves from earthquakes passing through Earth’s deep interior have revealed that these plumes are regions where seismic waves travel slowly. The mantle materials that surround these regions are thought to be composed of cooler rocks, associated with the downward movement of tectonic plates.

The plumes, also called thermo-chemical piles, have long been depicted as warmer-than-average mantle materials, pushed upward by a slow churning of hot mantle rock. The new paper argues they are also chemically different from the surrounding mantle rock, and may partly contain material pushed down by plate tectonics. They might even be material left over from Earth’s formation, 4.5 billion years ago.

Much is yet to be learned about these plumes. But the emerging view from seismic and geodynamic information is that they appear denser than the surrounding mantle materials, are dynamically stable and long-lived, and have been shaped by the mantle’s large-scale flow. The scientists expect that further work on the two deep-seated anomalies will help clarify the picture and tell of their origin.

“If a neuroscientist found an unknown structure in the human brain, the whole community of brain scientists, from psychologists to surgeons, would actively pursue understanding its role in the function of the whole system,” Garnero said.

“As the thermo-chemical piles come into sharper focus, we hope other Earth scientists will explore how these features fit into the big puzzle of planet Earth.”


Time is Running Out…..  Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive from our news service.

paypal donate_button_sm

If above banner does not work – Click Here


Seeds Of Black Holes Could Be Revealed By Gravitational Waves Detected In Space

Scientists led by Durham University’s Institute for Computational Cosmology ran the huge cosmological simulations that can be used to predict the rate at which gravitational waves caused by collisions between the monster black holes might be detected.

black hole

The amplitude and frequency of these waves could reveal the initial mass of the seeds from which the first black holes grew since they were formed 13 billion years ago and provide further clues about what caused them and where they formed, the researchers said.

The research is being presented today (Monday, June 27, 2016) at the Royal Astronomical Society’s National Astronomy Meeting in Nottingham, UK. It was funded by the Science and Technology Facilities Council, the European Research Council and the Belgian Interuniversity Attraction Poles Programme.

The study combined simulations from the EAGLE project — which aims to create a realistic simulation of the known Universe inside a computer — with a model to calculate gravitational wave signals.

Two detections of gravitational waves caused by collisions between supermassive black holes should be possible each year using space-based instruments such as the Evolved Laser Interferometer Space Antenna (eLISA) detector that is due to launch in 2034, the researchers said.

In February the international LIGO and Virgo collaborations announced that they had detected gravitational waves for the first time using ground-based instruments and in June reported a second detection.

As eLISA will be in space — and will be at least 250,000 times larger than detectors on Earth — it should be able to detect the much lower frequency gravitational waves caused by collisions between supermassive black holes that are up to a million times the mass of our sun.

Current theories suggest that the seeds of these black holes were the result of either the growth and collapse of the first generation of stars in the Universe; collisions between stars in dense stellar clusters; or the direct collapse of extremely massive stars in the early Universe.

As each of these theories predicts different initial masses for the seeds of supermassive black hole seeds, the collisions would produce different gravitational wave signals.

This means that the potential detections by eLISA could help pinpoint the mechanism that helped create supermassive black holes and when in the history of the Universe they formed.

Lead author Jaime Salcido, PhD student in Durham University’s Institute for Computational Cosmology, said: “Understanding more about gravitational waves means that we can study the Universe in an entirely different way.

“These waves are caused by massive collisions between objects with a mass far greater than our sun.

“By combining the detection of gravitational waves with simulations we could ultimately work out when and how the first seeds of supermassive black holes formed.”

Co- author Professor Richard Bower, of Durham University’s Institute for Computational Cosmology, added: “Black holes are fundamental to galaxy formation and are thought to sit at the centre of most galaxies, including our very own Milky Way.

“Discovering how they came to be where they are is one of the unsolved problems of cosmology and astronomy.

“Our research has shown how space based detectors will provide new insights into the nature of supermassive black holes.”

Gravitational waves were first predicted 100 years ago by Albert Einstein as part of his Theory of General Relativity.

The waves are concentric ripples caused by violent events in the Universe that squeeze and stretch the fabric of space time but most are so weak they cannot be detected.

LIGO detected gravitational waves using ground-based instruments, called interferometers, that use laser beams to pick up subtle disturbances caused by the waves.

eLISA will work in a similar way, detecting the small changes in distances between three satellites that will orbit the sun in a triangular pattern connected by beams from lasers in each satellite.

In June it was reported that the LISA Pathfinder, the forerunner to eLISA, had successfully demonstrated the technology that opens the door to the development of a large space observatory capable of detecting gravitational waves in space.

Clandestine Black Hole May Represent New Population

Astronomers have combined data from NASA’s Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) to conclude that a peculiar source of radio waves thought to be a distant galaxy is actually a nearby binary star system containing a low-mass star and a black hole. This identification suggests there may be a vast number of black holes in our Galaxy that have gone unnoticed until now.


For about two decades, astronomers have known about an object called VLA J213002.08+120904 (VLA J2130+12 for short). Although it is close to the line of sight to the globular cluster M15, most astronomers had thought that this source of bright radio waves was probably a distant galaxy.

Thanks to recent distance measurements with an international network of radio telescopes, including the EVN (European Very Long Baseline Interferometry Network) telescopes, the NSF’s Green Bank Telescope and Arecibo Observatory, astronomers realized that VLA J2130+12 is at a distance of 7,200 light years, showing that it is well within our own Milky Way galaxy and about five times closer than M15. A deep image from Chandra reveals it can only be giving off a very small amount of X-rays, while recent VLA data indicates the source remains bright in radio waves.

This new study indicates that VLA J2130+12 is a black hole a few times the mass of our Sun that is very slowly pulling in material from a companion star. At this paltry feeding rate, VLA J2130+12 was not previously flagged as a black hole since it lacks some of the telltale signs that black holes in binaries typically display.

“Usually, we find black holes when they are pulling in lots of material. Before falling into the black hole this material gets very hot and emits brightly in X-rays,” said Bailey Tetarenko of the University of Alberta, Canada, who led the study. “This one is so quiet that it’s practically a stealth black hole.”

This is the first time a black hole binary system outside of a globular cluster has been initially discovered while it is in such a quiet state.

Hubble observations identified VLA J2130+12 with a star having only about one-tenth to one-fifth the mass of the Sun. The observed radio brightness and the limit on the X-ray brightness from Chandra allowed the researchers to rule out other possible interpretations, such as an ultra-cool dwarf star, a neutron star, or a white dwarf pulling material away from a companion star.

Because this study only covered a very small patch of sky, the implication is that there should be many of these quiet black holes around the Milky Way. The estimates are that tens of thousands to millions of these black holes could exist within our Galaxy, about three to thousands of times as many as previous studies have suggested.

“Unless we were incredibly lucky to find one source like this in a small patch of the sky, there must be many more of these black hole binaries in our Galaxy than we used to think,” said co-author Arash Bahramian, also of the University of Alberta.

There are other implications of finding that VLA J2130+12 is relatively near to us.

“Some of these undiscovered black holes could be closer to the Earth than we previously thought,” said Robin Arnason, a co-author from Western University, Canada “However there’s no need to worry as even these black holes would still be many light years away from Earth.”

Sensitive radio and X-ray surveys covering large regions of the sky will need to be performed to uncover more of this missing population.

If, like many others, this black hole was formed in the plane of the Milky Way’s disk, it would have needed a large kick at birth to launch it to its current position about 3,000 light years above the plane of the Galaxy.

These results appear in a paper in The Astrophysical Journal. NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages the Chandra program for NASA’s Science Mission Directorate in Washington. The Smithsonian Astrophysical Observatory in Cambridge, Massachusetts, controls Chandra’s science and flight operations.