European Space Agency Gives Go-Ahead For LISA Mission for 2034

After years of delays and sluggish development process, the highly ambitious Laser Interferometer Space Antenna (LISA) mission has finally received authorization from the European Space Agency (ESA), confirmed an official announcement.

The Laser Interferometer Space Antenna (LISA) is a proposed mission of the European Space Agency which is intended to find out and precisely measure the enigmatic gravitational waves – the tiny ripples located in the material of space-time. With the help of astronomical sources, the LISA mission will help astronauts learning more about the gravitational waves, Earth-like planets, and deep-space cataclysms. LISA is also the very first dedicated mission to detect the space-based gravitational waves. By employing the technique of laser interferometers, LISA will collect information about the mysterious objects and topics of the celestial realm.

Years back, the LISA project was commenced as a collaborative mission between National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA). However, in 2011, because of the limitations in funding, NASA stepped back from the mission, and since then, the project was on the backburner. However, after almost six years, in a bid to take the long-standing project forward, the panel of ESA has given the LISA project “Go-Ahead” label, confirmed a senior official of ESA – Mark McCaughrean.

As said by Mark McCaughrean, the senior adviser of ESA for science & exploration, “There is a mixed feeling of super-enthusiasm and “at last”. We’re finally standing at the starting line of LISA, and the green light for the mission is already on – it’s so great.”

As per the official source, the design of LISA consists of three indistinguishable satellites which will orbit the Sun in a triangle motion. Each satellite will move at 2.5 million kilometers away from the next. The side layers of the triangle, made of satellites will be powerful enough to bounce the lasers to and from the spacecraft. Whenever any large celestial objects like black holes pass through space, they will create gravitational waves, and following the event, satellites of LISA will track down how these gravitational wields distort space through infinitesimal alterations in the distance covered by the laser beams.

As ESA said, for detecting these minuscule alterations, on a scale of lower than a trillionth of a metre, the Laser Interferometer Space Antenna satellite will pay no heed to cosmic rays as well as those tiny particles and light, emitted by the Sun.

Being a truly large-scale space mission, LISA project will help scientists learning more about one of the world’s most indefinable astronomical phenomena – gravitational waves. With LISA, astronomers will be capable of observing the entire cosmos directly with the enigmatic gravitational waves. Apart from this, the mission will also help them learn about the configuration of stellar evolution, formation of galactic structures and galaxies, the early universe, and the arrangement and qualities of space-time itself.

Author: Mitch Battros

Mitch Battros is a scientific journalist who is highly respected in both the scientific and spiritual communities due to his unique ability to bridge the gap between modern science and ancient text. Founded in 1995 – Earth Changes TV was born with Battros as its creator and chief editor for his syndicated television show. In 2003, he switched to a weekly radio show as Earth Changes Media. ECM quickly found its way in becoming a top source for news and discoveries in the scientific fields of astrophysics, space weather, earth science, and ancient text. Seeing the need to venture beyond the Sun-Earth connection, in 2016 Battros advanced his studies which incorporates our galaxy Milky Way - and its seemingly rhythmic cycles directly connected to our Solar System, Sun, and Earth driven by the source of charged particles such as galactic cosmic rays, gamma rays, and solar rays. Now, "Science Of Cycles" is the vehicle which brings the latest cutting-edge discoveries confirming his published Equation.