Cosmic Dust Found in City Rooftop Gutters

A small team of researchers with Imperial College London, the Natural History Museum in London, Project Stardust in Norway and Université Libre de Bruxelles in Belgium, has found samples of cosmic dust in the gutters of buildings in three major cities. In their paper published in the journal Geology, the team describes how they found cosmic dust particles the samples, what they look like and what they may reveal about the origins of the solar system.

cosmic_dust_scienceofcycles

Up till now, researchers looking for space dust have usually had to travel to the Antarctic – it was thought the tiny particles, believed to be left over remnants of the formation of the solar system, would be too difficult to find in places where there is a proliferation of other dust types, particularly in areas where people live. John Larson, an amateur space scientist with Project Stardust, came to researchers at Imperial College suggesting that maybe space dust could be found on rooftops. The team traveled to Oslo, Berlin and Paris and obtained 300 kilograms of dirt samples from rain gutters on rooftops. Back in the lab, they used magnets to pull possible cosmic dust grains from within the muck. They report that they found and identified approximately 500 samples.

The team also report that the dust grains they found were larger than those typically found in Antarctica – they measured approximately 0.3 millimeters as opposed to the customary average of 0.01 millimeters. They also noted the grains had fewer feather-like crystals than those found in Antarctica. They suggest the differences are likely due to age – those from Antarctica are typically much older, which would mean the planets would have been aligned slightly differently when they fell to Earth.

That differences indicate dust particles falling through the atmosphere would have been traveling much faster in more recent times due to a difference in trajectory – up to 12 kilometers per second, the fastest ever recorded for space dust. Those differences may illuminate the movement of the planets relative to one another over time, helping to understand the history of the solar system.

Cluster Galaxy Immersed in Giant Cloud of Cold Gas

Astronomers studying a cluster of still-forming protogalaxies seen as they were more than 10 billion years ago have found that a giant galaxy in the center of the cluster is forming from a surprisingly-dense soup of molecular gas.

clusterofgalaxies_scienceofcycles

“This is different from what we see in the nearby Universe, where galaxies in clusters grow by cannibalizing other galaxies. In this cluster, a giant galaxy is growing by feeding on the soup of cold gas in which it is submerged,” said Bjorn Emonts of the Center for Astrobiology in Spain, who led an international research team.

The scientists studied an object called the Spiderweb Galaxy, which actually is not yet a single galaxy, but a clustering of protogalaxies more than 10 billion light-years from Earth. At that distance, the object is seen as it was when the Universe was only 3 billion years old. The astronomers used the Australia Telescope Compact Array (ATCA) and the National Science Foundation’s Karl G. Jansky Very Large Array (VLA) to detect carbon monoxide (CO) gas.

The presence of the CO gas indicates a larger quantity of molecular hydrogen, which is much more difficult to detect. The astronomers estimated that the molecular gas totals more than 100 billion times the mass of the Sun. Not only is this quantity of gas surprising, they said, but the gas also must be unexpectedly cold, about minus-200 degrees Celsius. Such cold molecular gas is the raw material for new stars.

The CO in this gas indicates that it has been enriched by the supernova explosions of earlier generations of stars. The carbon and oxygen in the CO was formed in the cores of stars that later exploded.

The ATCA observations revealed the total extent of the gas, and the VLA observations, much more narrowly focused, provided another surprise. Most of the cold gas was found, not within the protogalaxies, but instead between them.
“This is a huge system, with this molecular gas spanning three times the size of our own Milky Way Galaxy,” said Preshanth Jagannathan, of the National Radio Astronomy Observatory (NRAO) in Socorro, NM.

Earlier observations of the Spiderweb, made at ultraviolet wavelengths, have indicated that rapid star formation is ongoing across most of the region occupied by the gas.

“It appears that this whole system eventually will collapse into a single, gigantic galaxy,” Jagannathan said.

“These observations give us a fascinating look at what we believe is an early stage in the growth of massive galaxies in clusters, a stage far different from galaxy growth in the current Universe,” said Chris Carilli, of NRAO.

Bethlehem Star May Not Be a Star After All

It is the nature of astronomers and astrophysicists to look up at the stars with wonder, searching for answers to the still-unsolved mysteries of the universe. The Star of Bethlehem, and its origin, has been one of those mysteries, pondered by scientists for centuries – and something Grant Mathews, professor of theoretical astrophysics and cosmology in the Department of Physics in the University of Notre Dame’s College of Science, has studied for more than a decade.

christmas-star-nebula_scienceofcycles

“Astronomers, historians and theologians have pondered the question of the ‘Christmas Star’ for many years,” said Mathews. “Where and when did it appear? What did it look like? Of the billions of stars out there, which among them shone bright on that day so long ago? Modern astrophysics is how we attempt to explain one of history’s greatest astronomical events.”  *Spoiler alert: It may not have been a star at all.

Studying historical, astronomical and biblical records, Mathews believes the event that led the Magi – Zoroastrian priests of ancient Babylon and Mesopotamia – was an extremely rare planetary alignment occurring in 6 B.C., and the likes of which may never be seen again.

During this alignment, the Sun, Jupiter, the moon and Saturn were all in Aries, while Venus was next door in Pisces, and Mercury and Mars were on the other side in Taurus. At the time, Aries was also the location of the vernal equinox.

The presence of Jupiter and the moon signified the birth of a ruler with a special destiny. Saturn was a symbol of the giving of life, as was the presence of Aries in the vernal equinox – also marking the start of spring. That the alignment occurred in Aries, Mathews said, signified a newborn ruler in Judea.

“The Magi would have seen this in the east and recognized that it symbolized a regal birth in Judea,” ultimately leading them in search of the newborn ruler, Mathews said. Based on his calculations, it will be 16,000 years before a similar alignment is seen again – and even then, the vernal equinox would not be in Aries. Running calculations forward, Mathews couldn’t find an alignment like the one known as the Bethlehem Star going out as far as 500,000 years.

“I feel a kindred connection to these ancient Magi,” said Mathews, “who earnestly scanned the heavens for insight into the truth about the nature and evolution of the universe, just as we do today.”

Mathews is at work on a book about his findings and gives an annual public lecture at the University of Notre Dame’s Digital Visualization Theater, where he maps the history of the sky dating back to 6 B.C.

Cassini Transmits First Images From New Orbit

NASA’s Cassini spacecraft has sent to Earth its first views of Saturn’s atmosphere since beginning the latest phase of its mission. The new images show scenes from high above Saturn’s northern hemisphere, including the planet’s intriguing hexagon-shaped jet stream.

cassini_saturn_rings_scienceofcycles

Cassini began its new mission phase, called its Ring-Grazing Orbits, on Nov. 30. Each of these weeklong orbits—20 in all—carries the spacecraft high above Saturn’s northern hemisphere before sending it skimming past the outer edges of the planet’s main rings.

Cassini’s imaging cameras acquired these latest views on Dec. 2 and 3, about two days before the first ring-grazing approach to the planet. Future passes will include images from near closest approach, including some of the closest-ever views of the outer rings and small moons that orbit there.

“This is it, the beginning of the end of our historic exploration of Saturn. Let these images—and those to come—remind you that we’ve lived a bold and daring adventure around the solar system’s most magnificent planet,” said Carolyn Porco, Cassini imaging team lead at Space Science Institute, Boulder, Colorado.

The next pass by the rings’ outer edges is planned for Dec. 11. The ring-grazing orbits will continue until April 22, when the last close flyby of Saturn’s moon Titan will once again reshape Cassini’s flight path. With that encounter, Cassini will begin its Grand Finale, leaping over the rings and making the first of 22 plunges through the 1,500-mile-wide (2,400-kilometer) gap between Saturn and its innermost ring on April 26.

On Sept. 15, the mission’s planned conclusion will be a final dive into Saturn’s atmosphere. During its plunge, Cassini will transmit data about the atmosphere’s composition until its signal is lost.

Launched in 1997, Cassini has been touring the Saturn system since arriving in 2004 for an up-close study of the planet, its rings and moons. Cassini has made numerous dramatic discoveries, including a global ocean with indications of hydrothermal activity within the moon Enceladus, and liquid methane seas on another moon, Titan.

UPDATE: Large Earthquakes Associated With Supermoon

This is an update to an article I wrote back in the second week of November telling of the supermoon on Nov. 14th and the likelihood of large earthquakes to occur. Just 48 hours after my published article, New Zealand is hit with a magnitude 7.8 quake followed by four additional quakes measuring over 6.2 magnitude. On November 21st a magnitude 6.9 quake hits Japan, and on November 24th a 7.0 mag. hits El Salvador.

november_2016_lg_quakes_scienceofcycles

As it relates to a supermoon, it is the additional close passage to Earth generating an even greater gravitational tug causing tide fluctuations. November 14th’s full moon was the biggest and brightest since 1948. It is called a supermoon because the full phase is taking place at the moon’s closest point in its orbit around the Earth, also called the perigee. The full moon won’t come this close to Earth again until November 25, 2034.

supermoon_scienceofcycles

Historically, my published research has identified a 14 day window prior to, and 14 day post period of a full lunar eclipse event. In different, but similar ways does a supermoon have its effects on all fluid, not just oceans. I call it ‘fluid displacement’ which includes magma, oil, and certain processes of natural gas. It is the expansion (or contraction) of fluids on tectonic plates which cause the increase of larger earthquakes or volcanic eruptions.

gravitational-pull

There is yet another supermoon is coming our way on December 14th 2016. However, the moon does not come as close as last months, but for those that missed Novembers you have one more chance to visit your local astronomy clubs who no doubt will have their telescopes pointed to the sky and are more than happy to share their passions.

UPDATE: New Study Suggest Cosmic Ray Origin Now Include ‘Dark Matter’

Observing the constant rain of cosmic rays hitting Earth can provide information on the “magnetic weather” in other parts of the Galaxy. A new high-precision measurement of two cosmic-ray elements, boron and carbon, supports a specific model of the magnetic turbulence that deflects cosmic rays on their journey through the Galaxy.

dark-matter3-science-of-cycles

The data, which come from the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station, appear to rule out alternative models for cosmic-ray propagation. By ruling out these models, the AMS results support the alternative explanation – a new primary cosmic ray source that emits positrons. Candidates include pulsars and dark matter, but a lot of mystery still surrounds the unexplained positron data.

The majority of cosmic rays are particles or nuclei produced in supernovae or other astrophysical sources. However, as these so-called primary cosmic rays travel through the Galaxy to Earth, they collide with gas atoms in the interstellar medium. The collisions produce a secondary class of cosmic rays with masses and energies that differ from primary cosmic rays.

interstellar-collision-science_of_cycles

To investigate the relationship of the two classes, astrophysicists often look at the ratio of the number of detection’s of two nuclei, such as boron and carbon. For the most part, carbon cosmic rays have a primary origin, whereas boron is almost exclusively created in secondary processes. A relatively high boron-to-carbon (B/C) ratio in a certain energy range implies that the relevant cosmic rays are traversing a lot of gas before reaching us. “The B/C ratio tells you how cosmic rays propagate through space,” says AMS principal investigator Samuel Ting of MIT.

Previous measurements of the B/C ratio have had large errors of 15% or more, especially at high energy, mainly because of the brief data collection time available for balloon-based detectors. But the AMS has been operating on the Space Station for five years, and over this time it has collected more than 80 billion cosmic rays. The AMS detectors measure the charges of these cosmic rays, allowing the elements to be identified. The collaboration has detected over ten million carbon and boron nuclei, with energies per nucleon ranging from a few hundred MeV up to a few TeV.

The B/C ratio decreases with energy because higher-energy cosmic rays tend to take a more direct path to us (and therefore experience fewer collisions producing boron). By contrast, lower-energy cosmic rays are diverted more strongly by magnetic fields, so they bounce around like pinballs among magnetic turbulence regions in the Galaxy. Several theories have been proposed to describe the size and spacing of these turbulent regions, and these theories lead to predictions for the energy dependence of the B/C ratio. However, previous B/C observations have not been precise enough to favor one theory over another. The AMS data show very clearly that the B/C ratio is proportional to the energy raised to the -1/3 power. This result matches a prediction based on a theory of magnetohydrodynamics developed in 1941 by the Russian mathematician Andrey Kolmogorov.

These results conflict with models that predict that the B/C ratio should exhibit some more complex energy dependence, such as kinks in the B/C spectrum at specific energies. Theorists proposed these models to explain anomalous observations – by AMS and other experiments – that showed an increase in the number of positrons (anti-electrons) reaching Earth relative to electrons at high energy. The idea was that these “excess” positrons are – like boron – produced in collisions between cosmic rays and interstellar gas. But such a scenario would require that cosmic rays encounter additional scattering sites, not just magnetically turbulent regions. By ruling out these models, the AMS results support the alternative explanation – a new primary cosmic ray source that emits positrons. Candidates include pulsars and dark matter, but a lot of mystery still surrounds the unexplained positron data.

Igor Moskalenko from Stanford University is very surprised at the close match between the data and the Kolmogorov model. He expected that the ratio would deviate from a single power law in a way that might provide clues to the origin of the excess positrons. “This is a dramatic result that should lead to much better understanding of interstellar magnetohydrodynamic turbulence and propagation of cosmic rays,” he says. “On the other hand, it is very much unexpected in that it makes recent discoveries in astrophysics of cosmic rays even more puzzling.”

More Hints of Exotic Cosmic-Ray Origin

Observing the constant rain of cosmic rays hitting Earth can provide information on the “magnetic weather” in other parts of the Galaxy. A new high-precision measurement of two cosmic-ray elements, boron and carbon, supports a specific model of the magnetic turbulence that deflects cosmic rays on their journey through the Galaxy.

dark-matter3-science-of-cycles

The data, which come from the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station, appear to rule out alternative models for cosmic-ray propagation. By ruling out these models, the AMS results support the alternative explanation – a new primary cosmic ray source that emits positrons. Candidates include pulsars and dark matter, but a lot of mystery still surrounds the unexplained positron data.

The majority of cosmic rays are particles or nuclei produced in supernovae or other astrophysical sources. However, as these so-called primary cosmic rays travel through the Galaxy to Earth, they collide with gas atoms in the interstellar medium. The collisions produce a secondary class of cosmic rays with masses and energies that differ from primary cosmic rays.

interstellar-collision-science_of_cycles

To investigate the relationship of the two classes, astrophysicists often look at the ratio of the number of detection’s of two nuclei, such as boron and carbon. For the most part, carbon cosmic rays have a primary origin, whereas boron is almost exclusively created in secondary processes. A relatively high boron-to-carbon (B/C) ratio in a certain energy range implies that the relevant cosmic rays are traversing a lot of gas before reaching us. “The B/C ratio tells you how cosmic rays propagate through space,” says AMS principal investigator Samuel Ting of MIT.

Previous measurements of the B/C ratio have had large errors of 15% or more, especially at high energy, mainly because of the brief data collection time available for balloon-based detectors. But the AMS has been operating on the Space Station for five years, and over this time it has collected more than 80 billion cosmic rays. The AMS detectors measure the charges of these cosmic rays, allowing the elements to be identified. The collaboration has detected over ten million carbon and boron nuclei, with energies per nucleon ranging from a few hundred MeV up to a few TeV.

The B/C ratio decreases with energy because higher-energy cosmic rays tend to take a more direct path to us (and therefore experience fewer collisions producing boron). By contrast, lower-energy cosmic rays are diverted more strongly by magnetic fields, so they bounce around like pinballs among magnetic turbulence regions in the Galaxy. Several theories have been proposed to describe the size and spacing of these turbulent regions, and these theories lead to predictions for the energy dependence of the B/C ratio. However, previous B/C observations have not been precise enough to favor one theory over another. The AMS data show very clearly that the B/C ratio is proportional to the energy raised to the -1/3 power. This result matches a prediction based on a theory of magnetohydrodynamics developed in 1941 by the Russian mathematician Andrey Kolmogorov.

These results conflict with models that predict that the B/C ratio should exhibit some more complex energy dependence, such as kinks in the B/C spectrum at specific energies. Theorists proposed these models to explain anomalous observations – by AMS and other experiments – that showed an increase in the number of positrons (anti-electrons) reaching Earth relative to electrons at high energy. The idea was that these “excess” positrons are – like boron – produced in collisions between cosmic rays and interstellar gas. But such a scenario would require that cosmic rays encounter additional scattering sites, not just magnetically turbulent regions. By ruling out these models, the AMS results support the alternative explanation – a new primary cosmic ray source that emits positrons. Candidates include pulsars and dark matter, but a lot of mystery still surrounds the unexplained positron data.

Igor Moskalenko from Stanford University is very surprised at the close match between the data and the Kolmogorov model. He expected that the ratio would deviate from a single power law in a way that might provide clues to the origin of the excess positrons. “This is a dramatic result that should lead to much better understanding of interstellar magnetohydrodynamic turbulence and propagation of cosmic rays,” he says. “On the other hand, it is very much unexpected in that it makes recent discoveries in astrophysics of cosmic rays even more puzzling.”