New Theories on Stellar Winds – Pulsating Magnetically Driven Radiative Energy

stellar pulsation3

A new study of the mechanism that drives stellar winds from the upper atmosphere of a star has shed new light. Astronomers think there are three possibilities: radiative, in which the pressure of the light pushes out the grains, magnetically driven, in which the stellar magnetic field plays a role in powering the flow, and pulsation driven, in which a periodic build-up of radiative energy in the stellar interior is suddenly released.

A new study of the mechanism that drives stellar winds from the upper atmosphere of a star has shed new light. Astronomers think there are three possibilities: radiative, in which the pressure of the light pushes out the grains, magnetically driven, in which the stellar magnetic field plays a role in powering the flow, and pulsation driven, in which a periodic build-up of radiative energy in the stellar interior is suddenly released.

stellar pulsation3

The winds of stars more evolved than the Sun (like the so-called giant stars that are cooler and larger in diameter than the Sun) often contain dust particles which enrich the interstellar medium with heavy elements. These winds also contain small grains on whose surfaces chemical reactions produce complex molecules. The dust also absorbs radiation and obscures visible light. Understanding the mechanism(s) that produce these winds in evolved stars is important both for modeling the wind and the character of the stellar environment, and for predicting the future evolution of the star.

stellar pulsation2

Nearly all stars have winds. The Sun’s wind, which originates from its hot outer layer (corona), contains charged particles emitted at a rate equivalent to about one-millionth of the moon’s mass each year. Some of these particles bombard the Earth, producing radio static, auroral glows, and (in extreme cases) disrupted global communications.

NASA'S Chandra Finds Fastest Wind From Stellar-Mass Black Hole
NASA’S Chandra Finds Fastest Wind From Stellar-Mass Black Hole

Over the years scientific opinion has varied among these alternatives, depending on each particular stellar example. Harvard–Smithsonian Center for Astrophysics Chris Johnson, and his colleagues explored the problem of wind-driving mechanism in giant stars by measuring the motion of the outflowing CO (carbon monoxide) gas around one the nearest and brightest giant stars, EU Del, which is only about 380 light-years away and shines with 1600 solar-luminosities.

new_equation 2012_m

New Equation:
Increase Charged Particles and Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

Its radius, if the star were placed at the position of the Sun, would extend past the orbit of Venus. EU Del is known to be a semi-regular variable star which pulses every sixty days or so (but with some secondary periods as well), and infrared observations suggest it has a circumstellar dust shell.

The astronomers used the submillimeter APEX (Atacama Pathfinder Experiment) telescope to look at warm CO gas in the wind, making EU Del one of the first stars of its class to be studied with this relatively new tool. The team reports finding the CO moving at about ten kilometers per second (twenty two thousand miles per hour) with a total mass-loss rate equal to about the mass of the Moon each year.

New Confirmation Galactic Cosmic Rays Have Increased Intensity

Further confirmation advocating my research related to external sources outside our solar system is synchronous to our interplanetary cycles. The Sun-Earth connection, analogous to its 11, 22 year cycle reacts in congruous with larger galactic cycles of 500, 1,000, 5,000, 44,000, 100,000 (Centrennium) and beyond into (Megaannus) 1,000,000 year cycles.

milky_way_system9_m

Only the most recent research has been able to identify such events as a result of almost magical new hardware of satellites, telescopes, spacecraft, and of course the software that goes with it. You might remember an article I wrote almost 2 years ago, as I reported to you what my sources directly connected to international space agencies, had told to me. It went something like this: “New information is coming in so fast, and is challenging our known formulas, templates, equations etc, we had to shut it down (figuratively) and begin our unsettling task of creating a new paradigm.”

galactic cosmic ray chart

As our brilliant, yet mostly isolated scientific disciplines, have begun to slowly unwind data that reaches memory sizes beyond Terabytes, beyond Petabytes, beyond Exabytes, now beyond Zettabytes, and currently is filling Yottabytes.  As the slow untangling of new insights unfold, we can now see a direct connection to cyclical patterns far beyond our solar system borders and into our home galaxy Milky Way.

Memory Scale: 1 yottabyte = 1024 zettabytes = 1048576 exabytes = 1073741824 petabytes = 1099511627776 terabytes = 1125899906842624 gigabytes.

nagoya

New information collected from neutron monitor measurements from the University of Oulu Cosmic Ray Station intensification of cosmic rays is making itself felt not only over the poles, but also over lower latitudes where Earth’s magnetic field provides a greater degree of protection against deep space radiation.

Earth’s magnetic field is currently weakening more rapidly. Data from the SWARM satellites have shown the field is starting to weaken faster than in the past. Previously, researchers estimated the field was weakening about 5 percent per century, but the new data revealed the field is actually weakening at 5 percent per decade, or 10 times faster than thought.

cosmic ray stream - solar system_m

New Equation:
Increase Charged Particles Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

new_equation 2012

In a recent study using neutron monitor measurements from the University of Oulu Cosmic Ray Station, show an accelerated amount of cosmic rays are now hitting lower latitudes likely due to a weakened magnetic field. This is cause for alert as radiation measurements have increased which could have a long-lasting effect on airline ceilings.

More on this research coming this week…………….

_____________________________

no-paypal-account-needed_sm

If banner is not working click here: http://bit.ly/1IheOn4

**We Are Always in Need of Supplemental Support – Thank You.

paypal-donate_button_sm

If banner is not working click here: http://bit.ly/1GqtVVb