Archaeologists Discover Almost 40 New Monuments Close To Newgrange

The research is part of the ‘Boyne to Brodgar’ project, which is examining connections between Neolithic sites in the Boyne Valley and the Orkney Islands.

The area surveyed included locations both sides of the Boyne, within the bend of the Boyne River, and across from the prehistoric tombs at Newgrange, Knowth and Dowth.

Newgrange is synonymous with the Winter Solstice, where the dawn light illuminates the burial chamber, and is among the best known of the passage tombs in Brú na Boinne.

Since 1993 the site has been a World Heritage Site designated by UNESCO.

Dr. Davis, who has worked for over a decade at Brú na Bóinne , said the monuments among the latest discoveries likely range from “early Neolithic houses to Neolithic timber enclosures as well as Bronze Age burial monuments and some early medieval farmsteads”.

“There are still significant gaps, most notably in our understanding of settlement, but we are continuing to work to understand these.”

The results of this year’s surveys “build on the exceptional summer last year in Brú na Bóinne and continue to demonstrate what a globally significant archaeological landscape we have in Brú na Bóinne,” he added.

When finished, the Boyne to Brodgar project, which began five years ago, will have surveyed more than five square kilometres.

Researchers Find Ancient Maya Farms In Mexican Wetlands

Archaeologists with the University of Cincinnati used the latest technology to find evidence suggesting ancient Maya people grew surplus crops to support an active trade with neighbors up and down the Yucatan Peninsula.

They will present their findings at the annual American Association of Geographers conference in Washington, D.C.

The Mayan civilization stretched across portions of Mesoamerica, a region spanning Mexico and Central America. The oldest evidence of Maya civilization dates back to 1800 B.C., but most cities flourished between 250 and 900 A.D. By the time Spanish ships arrived in the 1500s, some of the biggest cities were deserted. Researchers at UC are trying to piece together the life history of the Maya before the Spanish conquest.

Nicholas Dunning, a professor of geography in UC’s McMicken College of Arts and Sciences, was part of a research team that found evidence of cultivation along irregular-shaped fields in Mexico that followed the paths of canals and natural water channels at a place called Laguna de Terminos on the Gulf of Mexico. The archaeologists expect to find evidence of habitation when they begin excavations.

The extensive croplands suggest the ancient Maya could grow surplus crops, especially the cotton responsible for the renowned textiles that were traded throughout Mesoamerica.

“It was a much more complex market economy than the Maya are often given credit for,” Dunning said.

Local workers brought the Laguna de Terminos site to the attention of researchers about seven years ago.

“A forester working in the area said there seemed to be a network of ancient fields,” Dunning said. “I looked on Google Earth and was like, ‘Whoa!’ It was an area in the Maya Lowlands that I’d never paid any attention to. And obviously not a lot of other people had, either, from the perspective of looking at ancient agriculture.”

Satellite images revealed a patchwork quilt of blocks along drainage ditches that suggested they were built. Archaeologist also studied imagery NASA created of the region using a tool called Light Detection and Ranging, or LIDAR, that can depict the contours of the ground beneath the leafy canopy of trees and vegetation. Their review confirmed Dunning’s suspicions: the area was covered in ancient farm fields.

“It appears they developed fairly simply from modifications of existing drainage along the eastern edge of the wetlands,” Dunning said. “They probably deepened and straightened some channels or connected them in places, but then further expanded the fields with more sophisticated hydro-engineering.”

LIDAR gives scientists a never-before-seen picture of the Earth’s surface even after centuries of unchecked jungle growth conceals the remains of ancient structures. Researchers look for telltale signs of human activity: squares and rectangles indicating old foundations and circular pits from human-made reservoirs and quarries where the chert used in stone tools was mined. On the LIDAR maps, any hidden structures pop out, including ancient roads and former villages.

“That’s the magic of LIDAR,” UC assistant research professor Christopher Carr said.??Carr spent a career practicing engineering before returning to UC to study and eventually teach in the geography department. He approaches questions about the ancient Maya from an engineer’s perspective.

Carr pointed to a map of Yaxnohcah, Mexico, showing a small reservoir the ancient Maya apparently dug in a wetland far from cultivated fields or known settlements.

“What were my ancient counterparts thinking when they built that water reservoir? What did they want to accomplish?” he asked.

Carr also used the LIDAR imagery in the project to follow an ancient Maya road that perhaps hasn’t been traveled in more than 1,000 years. The road is perfectly visible on the LIDAR map but is virtually impossible to discern when you are standing right on it, Carr said.

“There’s vegetation everywhere. But when you’ve been doing this for a while, you notice little things,” Carr said. “I’ll have a LIDAR image on my smartphone that shows me where I am, but I don’t see anything but rainforest. You just walk back and forth until you can feel something underfoot and follow it.”

Identifying possible roads is important for another interest of the UC researchers: ancient Maya marketplaces. Dunning and Carr are working at Yaxnohcah with researchers such as Kathryn Reese-Taylor from the University of Calgary and Armando Anaya Hernandez from Universidad Autónoma de Campeche to unlock the mysteries of the ancient Maya economy. Additionally, they and graduate student Thomas Ruhl have been analyzing NASA’s LIDAR imagery across the Yucatan Peninsula to identify more ancient marketplaces.

Unlike pyramids or even many homes, marketplaces had no foundations or permanent structures, researchers said. They were built on low platforms or cleared areas, perhaps like a seasonal fair or flea market. But they were an important part of life in Maya culture

Dunning said the presence of roads between Maya cities would lend credence to the value the ancient Maya placed on trade with their neighbors. He thinks some of the larger squares identified on the LIDAR maps represent these open markets.

“In some areas, they have this very distinct physical signature,” Dunning said. “So far, we’ve identified several possible marketplaces. We don’t know for sure that they’re marketplaces, but they have an architectural layout that is suggestive of one.”

Soil analysis at other locations identified evidence of ancient butcher shops and stone masons. Dunning solicited the help of UC’s botanists who are conducting analyses that might shed light on his marketplace hypothesis. But the LIDAR maps themselves are instructive.

“I look at spatial patterns. If you look at these big structures and small pyramids, you can tell they’re important structures,” Carr said. “And then you have this ‘lightweight’ thing next to it. That’s what a marketplace looks like to me.”

Dunning said the ancient Maya likely sold perishable goods such as maize and a starchy tuber called manioc. And they traded “mantas,” or bolts of the ornate and richly patterned textiles made from the cotton they grew. These were prized by the Spaniards who arrived in the 1600s.

“We don’t have direct evidence of what the textiles look like in this area. But if you look at ancient paintings and sculptures, people were wearing very elaborate garments,” Dunning said.

Dunning first explored the historic sites of the Yucatan Peninsula at age 14 when he and his older brother drove down to Mexico from Illinois.

“We took a train to the Yucatan and used public transportation to get around to the sites,” Dunning said.

He applied to the University of Chicago partly because it offered a Mayan language class. Dunning returned to Mexico while in college to conduct his first field research. He’s been back many times since.

“My interest in archaeology is in human-environment interactions, including agriculture,” Dunning said.

Dunning is learning more about how ancient Maya people shaped their world to overcome challenges and take advantage of natural opportunities. Dunning’s work also took him to a place called Acalan near the Gulf of Mexico.

“Roughly translated, Acalan means ‘place of canoes’ because it’s very watery,” Dunning said. “And getting around by water is far easier than any other means in that area.”

Then as now the region is covered in thick tropical rainforest. Researchers have to be wary of cheeky monkeys that will throw fruit or worse from the treetops. Carr said one encounter left him sore for days.

“There was this aggressive spider monkey. He’d seen me a couple days earlier. And he’s back shaking the trees,” Carr said. “And all of a sudden, I’m lying flat on the ground. A branch hit me in the shoulder and knocked me to the ground.”

Visiting archaeologists at Yaxnohcah stay at a former Army outpost that was converted into a staffed research station.

“Living conditions are actually luxurious by camping standards. You’re in the field all day and you’re dirty and tired. But you can take a shower. And when you’re finished, someone has cooked you a meal,” Carr said.

At Laguna de Terminos, UC researchers are working to collect clues about the ancient Maya before they are lost to development. Many of the wetlands are being drained or plowed up for grazing pasture.?

Dunning said ironically these low-yield pastures provide far less economic value to today’s farmers than the seeming bounty of crops the ancient Maya derived from them more than 1,000 years ago. Their study warns the land-use practices are causing environmental damage to some of these valuable wetlands.

“It’s a shame because the grazing isn’t particularly good. The economic production from that land use is minuscule compared to what was produced by the Maya,” Dunning said.

JUST IN: Fresco Painting of Narcissus Discovered in Pompeii

Archaeologists have discovered a fresco in an ancient Pompeii residence that portrays the mythological hunter Narcissus, who fell in love with his own reflection.

The discovery announced Thursday is in the atrium of a house where a fresco was found late last year depicting a sensual scene between the Roman god Jupiter disguised as a swan and Leda, a queen of Sparta from Greek mythology.

Pompeii director Alfonsina Russo said that the “beauty of these rooms” has prompted officials to continue to uncover more treasures so that one day the house can be at least partially opened to the public.

Officials noted archaeologists also found inside the ancient atrium a dozen glass containers, eight terracotta vases and a bronze funnel in a space underneath a staircase.

MERMAIDs Reveal Secrets from Below the Ocean Floor

Seismologists use waves generated by earthquakes to scan the interior of our planet, much like doctors image their patients using medical tomography. Earth imaging has helped us track down the deep origins of volcanic islands such as Hawaii, and identify the source zones of deep earthquakes.

“Imagine a radiologist forced to work with a CAT scanner that is missing two-thirds of its necessary sensors,” said Frederik Simons, a professor of geosciences at Princeton. “Two-thirds is the fraction of the Earth that is covered by oceans and therefore lacking seismic recording stations. Such is the situation faced by seismologists attempting to sharpen their images of the inside of our planet.”

Some 15 years ago, when he was a postdoctoral researcher, Simons partnered with Guust Nolet, now the George J. Magee Professor of Geoscience and Geological Engineering, Emeritus, and they resolved to remediate this situation by building an undersea robot equipped with a hydrophone—an underwater microphone that can pick up the sounds of distant earthquakes whose waves deliver acoustic energy into the oceans through the ocean floor.

This week, Nolet, Simons and an international team of researchers published the first scientific results from the revolutionary seismic floats, dubbed MERMAIDs—Mobile Earthquake Recording in Marine Areas by Independent Divers.

The researchers, from institutions in the United States, France, Ecuador and China, found that the volcanoes on Galápagos are fed by a source 1,200 miles (1,900 km) deep, via a narrow conduit that is bringing hot rock to the surface. Such “mantle plumes” were first proposed in 1971 by one of the fathers of plate tectonics, Princeton geophysicist W. Jason Morgan, but they have resisted attempts at detailed seismic imaging because they are found in the oceans, rarely near any seismic stations.

MERMAIDs drift passively, normally at a depth of 1,500 meters—about a mile below the sea surface—moving 2-3 miles per day. When one detects a possible incoming earthquake, it rises to the surface, usually within 95 minutes, to determine its position with GPS and transmit the seismic data.

By letting their nine robots float freely for two years, the scientists created an artificial network of oceanic seismometers that could fill in one of the blank areas on the global geologic map, where otherwise no seismic information is available.

The unexpectedly high temperature that their model shows in the Galápagos mantle plume “hints at the important role that plumes play in the mechanism that allows the Earth to keep itself warm,” said Nolet.

“Since the 19th century, when Lord Kelvin predicted that Earth should cool to be a dead planet within a hundred million years, geophysicists have struggled with the mystery that the Earth has kept a fairly constant temperature over more than 4.5 billion years,” Nolet explained. “It could have done so only if some of the original heat from its accretion, and that created since by radioactive minerals, could stay locked inside the lower mantle. But most models of the Earth predict that the mantle should be convecting vigorously and releasing this heat much more quickly. These results of the Galápagos experiment point to an alternative explanation: the lower mantle may well resist convection, and instead only bring heat to the surface in the form of mantle plumes such as the ones creating Galápagos and Hawaii.”

To further answer questions on the heat budget of the Earth and the role that mantle plumes play in it, Simons and Nolet have teamed up with seismologists from the Southern University of Science and Technology (SUSTech) in Shenzhen, China, and from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC). Together, and with vessels provided by the French research fleet, they are in the process of launching some 50 MERMAIDs in the South Pacific to study the mantle plume region under the island of Tahiti.

“Stay tuned! There are many more discoveries to come,” said professor Yongshun (John) Chen, a 1989 Princeton graduate alumnus who is head of the Department of Ocean Science and Engineering at SUSTech, which is leading the next phase of what they and their international team have called EarthScope-Oceans.

Researchers Unearth an Ice Age in the African Desert

A field trip to Namibia to study volcanic rocks led to an unexpected discovery by West Virginia University geologists Graham Andrews and Sarah Brown.

While exploring the desert country in southern Africa, they stumbled upon a peculiar land formation—flat desert scattered with hundreds of long, steep hills. They quickly realized the bumpy landscape was shaped by drumlins, a type of hill often found in places once covered in glaciers, an abnormal characteristic for desert landscapes.

“We quickly realized what we were looking at because we both grew up in areas of the world that had been under glaciers, me in Northern Ireland and Sarah in northern Illinois,” said Andrews, an assistant professor of geology. “It’s not like anything we see in West Virginia where we’re used to flat areas and then gorges and steep-sided valleys down into hollows.”

After returning home from the trip, Andrews began researching the origins of the Namibian drumlins, only to learn they had never been studied.

“The last rocks we were shown on the trip are from a time period when southern Africa was covered by ice,” Andrews said. “People obviously knew that part of the world had been covered in ice at one time, but no one had ever mentioned anything about how the drumlins formed or that they were even there at all.”

WVU researcher unearths an ice age in the African desert
Andrew McGrady. Credit: WVU

Andrews teamed up with WVU geology senior Andy McGrady to use morphometrics, or measurements of shapes, to determine if the drumlins showed any patterns that would reflect regular behaviors as the ice carved them.

While normal glaciers have sequential patterns of growing and melting, they do not move much, Andrews explained. However, they determined that the drumlins featured large grooves, which showed that the ice had to be moving at a fast pace to carve the grooves.

These grooves demonstrated the first evidence of an ice stream in southern Africa in the late Paleozoic Age, which occurred about 300 million years ago.

“The ice carved big, long grooves in the rock as it moved,” Andrews said. “It wasn’t just that there was ice there, but there was an ice stream. It was an area where the ice was really moving fast.”

McGrady used freely available information from Google Earth and Google Maps to measure their length, width and height.

WVU researcher unearths an ice age in the African desert

“This work is very important because not much has been published on these glacial features in Namibia,” said McGrady, a senior geology student from Hamlin. “It’s interesting to think that this was pioneer work in a sense, that this is one of the first papers to cover the characteristics of these features and gives some insight into how they were formed.”

Their findings also confirm that southern Africa was located over the South Pole during this period.

“These features provide yet another tie between southern Africa and south America to show they were once joined,” Andrews said.

The study, “First description of subglacial megalineations from the late Paleozoic ice age in southern Africa” is published in the Public Library of Science’s PLOS ONE journal.

“This is a great example of a fundamental discovery and new insights into the climatic history of our world that remain to be discovered,” said Tim Carr, chair of the Department of Geology and Geography.

How Climate Change Caused the World’s First Empire to Collapse

Not one smoke stack, vehicle, or petroleum of any form was mentioned in this scientific article. However, there does appear to be an assumption of rhythmic cycles.

Gol-e-Zard Cave lies in the shadow of Mount Damavand, which at more than 5,000 meters dominates the landscape of northern Iran. In this cave, stalagmites and stalactites are growing slowly over millennia and preserve in them clues about past climate events. Changes in stalagmite chemistry from this cave have now linked the collapse of the Akkadian Empire to climate changes more than 4,000 years ago.

Akkadia was the world’s first empire. It was established in Mesopotamia around 4,300 years ago after its ruler, Sargon of Akkad, united a series of independent city states. Akkadian influence spanned along the Tigris and Euphrates rivers from what is now southern Iraq, through to Syria and Turkey. The north-south extent of the empire meant that it covered regions with different climates, ranging from fertile lands in the north which were highly dependent on rainfall (one of Asia’s “bread baskets”), to the irrigation-fed alluvial plains to the south.

It appears that the empire became increasingly dependent on the productivity of the northern lands and used the grains sourced from this region to feed the army and redistribute the food supplies to key supporters. Then, about a century after its formation, the Akkadian Empire suddenly collapsed, followed by mass migration and conflicts. The anguish of the era is perfectly captured in the ancient Curse of Akkad text, which describes a period of turmoil with water and food shortages: “… the large arable tracts yielded no grain, the inundated fields yielded no fish, the irrigated orchards yielded no syrup or wine, the thick clouds did not rain.”

Drought and dust

The reason for this collapse is still debated by historians, archaeologists and scientists. One of the most prominent views, championed by Yale archaeologist Harvey Weiss (who built on earlier ideas by Ellsworth Huntington), is that it was caused by an abrupt onset of drought conditions which severely affected the productive northern regions of the empire.

Weiss and his colleagues discovered evidence in northern Syria that this once prosperous region was suddenly abandoned around 4,200 years ago, as indicated by a lack of pottery and other archaeological remains. Instead, the rich soils of earlier periods were replaced by large amounts of wind-blown dust and sand, suggesting the onset of drought conditions. Subsequently, marine cores from the Gulf of Oman and the Red Sea which linked the input of dust into the sea to distant sources in Mesopotamia, provided further evidence of a regional drought at the time.

Many other researchers viewed Weiss’s interpretation with skepticism, however. Some argued, for example, that the archaeological and marine evidence was not accurate enough to demonstrate a robust correlation between drought and societal change in Mesopotamia.

A new detailed climate record

Now, stalagmite data from Iran sheds new light on the controversy. In a study published in the journal PNAS, led by Oxford palaeoclimatologist Stacy Carolin, colleagues and I provide a very well dated and high resolution record of dust activity between 5,200 and 3,700 years ago. And cave dust from Iran can tell us a surprising amount about climate history elsewhere.

Gol-e-Zard Cave might be several hundred miles to the east of the former Akkadian Empire, but it is directly downwind. As a result, around 90% of the region’s dust originates in the deserts of Syria and Iraq.

That desert dust has a higher concentration of magnesium than the local limestone which forms most of Gol-e-Zard’s stalagmites (the ones which grow upwards from the cave floor). Therefore, the amount of magnesium in the Gol-e-Zard stalagmites can be used as an indicator of dustiness at the surface, with higher magnesium concentrations indicating dustier periods, and by extension drier conditions.

The stalagmites have the additional advantage that they can be dated very precisely using uranium-thorium chronology. Combining these methods, our new study provides a detailed history of dustiness in the area, and identifies two major drought periods which started 4,510 and 4,260 years ago, and lasted 110 and 290 years respectively. The latter event occurs precisely at the time of the Akkadian Empire’s collapse and provides a strong argument that climate change was at least in part responsible.

The collapse was followed by mass migration from north to south which was met with resistance by the local populations. A 180km wall – the “Repeller of the Amorites” – was even built between the Tigris and Euphrates in an effort to control immigration, not unlike some strategies proposed today. The stories of abrupt climate change in the Middle East therefore echo over millennia to the present day.

Peruvian Scientists Use DNA To Trace Origins Of Inca Emperors

Researchers in Peru believe they have traced the origins of the Incas —the largest pre-Hispanic civilization in the Americas—through the DNA of the modern-day descendants of their emperors.

From their ancient capital Cusco, the Incas controlled a vast empire called Tahuantinsuyo, which extended from the west of present-day Argentina to the south of Colombia.

They ruled for more than two hundred years before being conquered by the invading Spanish in the 16th century.

The empire included the mountain-top citadel of Machu Picchu in modern-day Peru—now a UNESCO World Heritage Site and a major tourist attraction.

After becoming fascinated by the Inca culture, their organizational skills and their mastery of engineering, researchers Ricardo Fujita and Jose Sandoval of Lima’s University of San Martin de Porresit became interested in the genetic profile of their descendants.

They said the aim of the study, the first of its kind, was to reveal whether there was a unique Inca patriarch.

“It’s like a paternity test, not between father and son but among peoples,” Fujita told AFP.

The scientists wanted to verify two common legends about the origin of the Incas.

One attributes them to a couple from around Lake Titicaca, in Peru’s Puno region. The other identifies the first Incas as the Ayar brothers from the Pacaritambo mountain in the Cusco region.

DNA samples were taken from inhabitants of both places.

“After three years of tracking the genetic fingerprints of the descendants, we confirm that the two legends explaining the origin of the Inca civilization could be related,” said Fujita.

Genetic similarities

“They were compared with our genealogical base of more than 3,000 people to reconstruct the genealogical tree of all individuals,” said Fujita.

“We finally reduced this base to almost 200 people sharing genetic similarities close to the Inca nobility.”

The study released some preliminary results in April, in the review Molecular Genetics and Genomics.

“The conclusion we came to is that the Tahuantinsuyo nobility is descended from two lines, one in the region of Lake Titicaca, the other around the mountain of Pacaritambo in Cusco. That confirms the legends,” said Sandoval.

But it also confirms that the two legends were linked.

“Probably the first migration came from the Puno region and was established in Pacaritambo for a few decades before heading to Cusco and founding Tahuantinsuyo,” he said.

But the work of the researchers does not stop there. Now they want to go further back in time.

For that, they have to test the DNA of ancient relics, such as mummies, “to form the most complete picture of the origin of the most important pre-Hispanic civilization,” said Fujita.

The task looks complicated because the Spanish Conquistadores, who arrived 1532, destroyed Inca mummies that families venerated, as they sought to convert people to Christianity.

The researchers are now looking for where the Incas’ most direct descendants are buried in order to trace their history.

The DNA analysis would add to archeological and anthropological research to understand the exact origin of the people.

“In this case, we use … genetics, the transmission of molecular features across the generations,” said Fujita.