Iron Volcanoes May Have Erupted on Metal Asteroids

Metallic asteroids are thought to have started out as blobs of molten iron floating in space. As if that’s not strange enough, scientists now think that as the metal cooled and solidified, volcanoes spewing liquid iron could have erupted through a solid iron crust onto the surface of the asteroid.

This scenario emerged from an analysis by planetary scientists at UC Santa Cruz whose investigation was prompted in part by NASA’s plans to launch a probe to Psyche, the largest metallic asteroid in the solar system. Francis Nimmo, professor of Earth and planetary sciences, said he was interested in the composition of metallic asteroids indicated by analyses of iron meteorites, so he had graduate student Jacob Abrahams work on some simple models of how the asteroids cooled and solidified.

“One day he turned to me and said, ‘I think these things are going to erupt,'” Nimmo said. “I’d never thought about it before, but it makes sense because you have a buoyant liquid beneath a dense crust, so the liquid wants to come up to the top.”

The researchers described their findings in a paper that has been accepted for publication in Geophysical Research Letters.

Metallic asteroids originated early in the history of the solar system when planets were beginning to form. A protoplanet or “planetesimal” involved in a catastrophic collision could be stripped of its rocky outer layers, exposing a molten, iron-rich core. In the cold of space, this blob of liquid metal would quickly begin to cool and solidify.

As for what the iron volcanoes would look like, Abrahams said it depends on the composition of the melt. “If it’s mostly pure iron, then you would have eruptions of low-viscosity surface flows spreading out in thin sheets, so nothing like the thick, viscous lava flows you see on Hawaii,” he said. “At the other extreme, if there are light elements mixed in and gases that expand rapidly, you could have explosive volcanism that might leave pits in the surface.”

__________________

Science Of Cycles keeps you tuned-in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

Japan Probe Prepares to Blast Asteroid from Hayabusa2

A Japanese probe began descending towards an asteroid on Thursday on a mission to blast a crater into its surface and collect material that could shed light on the solar system’s evolution.

The mission will be the latest in a series of explorations carried out by the Japanese space agency’s Hayabusa2 probe and could reveal more about the origin of life on Earth.

But the task scheduled for Friday will be the riskiest yet of Hayabusa2’s investigations, and involves the release of a device filled with explosives.

The so-called “small carry-on impactor”, a cone-shaped device capped with a copper bottom, will emerge from Hayabusa2 on Friday, after the probe has arrived just 500 meters above the asteroid Ryugu.

The probe will then depart the area, and the impactor is programmed to explode 40 minutes later, propelling the copper bottom towards Ryugu, where it should gouge a crater into the surface of the asteroid that sits 300 million kilometers from Earth.

Hayabusa2 will move away from the area to avoid being damaged by debris from the explosion or the collision with Ryugu.

As it does so it will release a camera slightly above the site of the detonation that should be able to capture images of the event.

Hubble Watches Asteroid Coming Apart

A small asteroid has been caught in the process of spinning so fast it’s throwing off material, according to new data from NASA’s Hubble Space Telescope and other observatories.

Images from Hubble show two narrow, comet-like tails of dusty debris streaming from the asteroid (6478) Gault. Each tail represents an episode in which the asteroid gently shed its material—key evidence that Gault is beginning to come apart.

Discovered in 1988, the 2.5-mile-wide (4-kilometer-wide) asteroid has been observed repeatedly, but the debris tails are the first evidence of disintegration. Gault is located 214 million miles (344 million kilometers) from the Sun. Of the roughly 800,000 known asteroids between Mars and Jupiter, astronomers estimate that this type of event in the asteroid belt is rare, occurring roughly once a year.

Watching an asteroid become unglued gives astronomers the opportunity to study the makeup of these space rocks without sending a spacecraft to sample them.

“We didn’t have to go to Gault,” explained Olivier Hainaut of the European Southern Observatory in Germany, a member of the Gault observing team. “We just had to look at the image of the streamers, and we can see all of the dust grains well-sorted by size. All the large grains (about the size of sand particles) are close to the object and the smallest grains (about the size of flour grains) are the farthest away because they are being pushed fastest by pressure from sunlight.”

Gault is only the second asteroid whose disintegration has been strongly linked to a process known as a YORP effect. (YORP stands for “Yarkovsky-O’Keefe-Radzievskii-Paddack,” the names of four scientists who contributed to the concept.) When sunlight heats an asteroid, infrared radiation escaping from its warmed surface carries off angular momentum as well as heat. This process creates a tiny torque that can cause the asteroid to continually spin faster. When the resulting centrifugal force starts to overcome gravity, the asteroid’s surface becomes unstable, and landslides may send dust and rubble drifting into space at a couple miles per hour, or the speed of a strolling human. The researchers estimate that Gault could have been slowly spinning up for more than 100 million years.

Piecing together Gault’s recent activity is an astronomical forensics investigation involving telescopes and astronomers around the world. All-sky surveys, ground-based telescopes, and space-based facilities like the Hubble Space Telescope pooled their efforts to make this discovery possible.

The initial clue was the fortuitous detection of the first debris tail, observed on Jan. 5, 2019, by the NASA-funded Asteroid Terrestrial-Impact Last Alert System (ATLAS) telescope in Hawaii. The tail also turned up in archival data from December 2018 from ATLAS and the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) telescopes in Hawaii. In mid-January, a second shorter tail was spied by the Canada-France-Hawaii Telescope in Hawaii and the Isaac Newton Telescope in Spain, as well as by other observers. An analysis of both tails suggests the two dust events occurred around Oct. 28 and Dec. 30, 2018.

Follow-up observations with the William Herschel Telescope and ESA’s (European Space Agency) Optical Ground Station in La Palma and Tenerife, Spain, and the Himalayan Chandra Telescope in India measured a two-hour rotation period for the object, close to the critical speed at which a loose “rubble-pile” asteroid begins to break up.

Astronomers Discover 83 Supermassive Black Holes In The Early Universe

Astronomers from Japan, Taiwan and Princeton University have discovered 83 quasars powered by supermassive black holes in the distant universe, from a time when the universe was less than 10 percent of its present age.

“It is remarkable that such massive dense objects were able to form so soon after the Big Bang,” said Michael Strauss, a professor of astrophysical sciences at Princeton University who is one of the co-authors of the study. “Understanding how black holes can form in the early universe, and just how common they are, is a challenge for our cosmological models.”

This finding increases the number of black holes known at that epoch considerably, and reveals, for the first time, how common they are early in the universe’s history. In addition, it provides new insight into the effect of black holes on the physical state of gas in the early universe in its first billion years. The research appears in a series of five papers published in The Astrophysical Journal and the Publications of the Astronomical Observatory of Japan.

Supermassive black holes, found at the centers of galaxies, can be millions or even billions of times more massive than the sun. While they are prevalent today, it is unclear when they first formed, and how many existed in the distant early universe. A supermassive black hole becomes visible when gas accretes onto it, causing it to shine as a “quasar.” Previous studies have been sensitive only to the very rare, most luminous quasars, and thus the most massive black holes. The new discoveries probe the population of fainter quasars, powered by black holes with masses comparable to most black holes seen in the present-day universe.

The research team used data taken with a cutting-edge instrument, “Hyper Suprime-Cam” (HSC), mounted on the Subaru Telescope of the National Astronomical Observatory of Japan, which is located on the summit of Maunakea in Hawaii. HSC has a gigantic field-of-view — 1.77 degrees across, or seven times the area of the full moon — mounted on one of the largest telescopes in the world. The HSC team is surveying the sky over the course of 300 nights of telescope time, spread over five years.

The team selected distant quasar candidates from the sensitive HSC survey data. They then carried out an intensive observational campaign to obtain spectra of those candidates, using three telescopes: the Subaru Telescope; the Gran Telescopio Canarias on the island of La Palma in the Canaries, Spain; and the Gemini South Telescope in Chile. The survey has revealed 83 previously unknown very distant quasars. Together with 17 quasars already known in the survey region, the researchers found that there is roughly one supermassive black hole per cubic giga-light-year — in other words, if you chunked the universe into imaginary cubes that are a billion light-years on a side, each would hold one supermassive black hole.

The sample of quasars in this study are about 13 billion light-years away from the Earth; in other words, we are seeing them as they existed 13 billion years ago. As the Big Bang took place 13.8 billion years ago, we are effectively looking back in time, seeing these quasars and supermassive black holes as they appeared only about 800 million years after the creation of the (known) universe.

It is widely accepted that the hydrogen in the universe was once neutral, but was “reionized” — split into its component protons and electrons — around the time when the first generation of stars, galaxies and supermassive black holes were born, in the first few hundred million years after the Big Bang. This is a milestone of cosmic history, but astronomers still don’t know what provided the incredible amount of energy required to cause the reionization. A compelling hypothesis suggests that there were many more quasars in the early universe than detected previously, and it is their integrated radiation that reionized the universe.

“However, the number of quasars we observed shows that this is not the case,” explained Robert Lupton, a 1985 Princeton Ph.D. alumnus who is a senior research scientist in astrophysical sciences. “The number of quasars seen is significantly less than needed to explain the reionization.” Reionization was therefore caused by another energy source, most likely numerous galaxies that started to form in the young universe.

The present study was made possible by the world-leading survey ability of Subaru and HSC. “The quasars we discovered will be an interesting subject for further follow-up observations with current and future facilities,” said Yoshiki Matsuoka, a former Princeton postdoctoral researcher now at Ehime University in Japan, who led the study. “We will also learn about the formation and early evolution of supermassive black holes, by comparing the measured number density and luminosity distribution with predictions from theoretical models.”

Based on the results achieved so far, the team is looking forward to finding yet more distant black holes and discovering when the first supermassive black hole appeared in the universe.

LAMP Instrument Sheds Light On Lunar Water Movement

Using the Southwest Research Institute-led Lyman Alpha Mapping Project (LAMP) aboard NASA’s Lunar Reconnaissance Orbiter (LRO), scientists have observed water molecules moving around the dayside of the Moon. A paper published in Geophysical Research Letters describes how LAMP measurements of the sparse layer of molecules temporarily stuck to the surface helped characterize lunar hydration changes over the course of a day.

Up until the last decade or so, scientists thought the Moon was arid, with any water existing mainly as pockets of ice in permanently shaded craters near the poles. More recently, scientists have identified surface water in sparse populations of molecules bound to the lunar soil, or regolith. The amount and locations vary based on the time of day. This water is more common at higher latitudes and tends to hop around as the surface heats up.

“This is an important new result about lunar water, a hot topic as our nation’s space program returns to a focus on lunar exploration,” said SwRI’s Dr. Kurt Retherford, the principal investigator of the LRO LAMP instrument. “We recently converted the LAMP’s light collection mode to measure reflected signals on the lunar dayside with more precision, allowing us to track more accurately where the water is and how much is present.”

Water molecules remain tightly bound to the regolith until surface temperatures peak near lunar noon. Then, molecules thermally desorb and can bounce to a nearby location that is cold enough for the molecule to stick or populate the Moon’s extremely tenuous atmosphere, or “exosphere,” until temperatures drop and the molecules return to the surface. SwRI’s Dr. Michael Poston, now a research scientist on the LAMP team, had previously conducted extensive experiments with water and lunar samples collected by the Apollo missions. This research revealed the amount of energy needed to remove water molecules from lunar materials, helping scientists understand how water is bound to surface materials.

“Lunar hydration is tricky to measure from orbit, due to the complex way that light reflects off of the lunar surface,” Poston said. “Previous research reported quantities of hopping water molecules that were too large to explain with known physical processes. I’m excited about these latest results because the amount of water interpreted here is consistent with what lab measurements indicate is possible. More work is needed to fully account for the complexities of the lunar surface, but the present results show that work is definitely worth doing!”

Scientists have hypothesized that hydrogen ions in the solar wind may be the source of most of the Moon’s surface water. With that in mind, when the Moon passes behind the Earth and is shielded from the solar wind, the “water spigot” should essentially turn off. However, the water observed by LAMP does not decrease when the Moon is shielded by the Earth and the region influenced by its magnetic field, suggesting water builds up over time, rather than “raining” down directly from the solar wind.

“These results aid in understanding the lunar water cycle and will ultimately help us learn about accessibility of water that can be used by humans in future missions to the Moon,” said Amanda Hendrix, a senior scientist at the Planetary Science Institute and lead author of the paper. “A source of water on the Moon could help make future crewed missions more sustainable and affordable. Lunar water can potentially be used by humans to make fuel or to use for radiation shielding or thermal management; if these materials do not need to be launched from Earth, that makes these future missions more affordable.”

The funding for this research came from NASA Goddard Space Flight Center’s LRO program office, including an LRO LAMP subcontract between SwRI and PSI, and the team received additional support from a NASA Solar System Exploration Research Virtual Institute (SSERVI) cooperative agreement.

New Surprises From Jupiter And Saturn

The latest data sent back by the Juno and Cassini spacecraft from giant gas planets Jupiter and Saturn have challenged a lot of current theories about how planets in our solar system form and behave.

The detailed magnetic and gravity data have been “invaluable but also confounding,” said David Stevenson from Caltech, who will present an update of both missions this week at the 2019 American Physical Society March Meeting in Boston.

“Although there are puzzles yet to be explained, this is already clarifying some of our ideas about how planets form, how they make magnetic fields and how the winds blow,” Stevenson said.

Cassini orbited Saturn for 13 years before its dramatic final dive into the planet’s interior in 2017, while Juno has been orbiting Jupiter for two and a half years.

Juno’s success as a mission to Jupiter is a tribute to innovative design. Its instruments are powered by solar energy alone and protected so as to withstand the fierce radiation environment.

Stevenson says the inclusion of a microwave sensor on Juno was a good decision.

“Using microwaves to figure out the deep atmosphere was the right, but unconventional, choice,” he said. The microwave data have surprised the scientists, in particular by showing that the atmosphere is evenly mixed, something conventional theories did not predict.

“Any explanation for this has to be unorthodox,” Stevenson said.

Researchers are exploring weather events concentrating significant amounts of ice, liquids and gas in different parts of the atmosphere as possible explanations, but the matter is far from sealed.

Other instruments on board Juno, gravity and magnetic sensors, have also sent back perplexing data. The magnetic field has spots (regions of anomalously high or low magnetic field) and also a striking difference between the northern and southern hemispheres.

“It’s unlike anything we have seen before,” Stevenson said.

The gravity data have confirmed that in the midst of Jupiter, which is at least 90 percent hydrogen and helium by mass, there are heavier elements amounting to more than 10 times the mass of Earth. However, they are not concentrated in a core but are mixed in with the hydrogen above, most of which is in the form of a metallic liquid.

The data has provided rich information about the outer parts of both Jupiter and Saturn. The abundance of heavier elements in these regions is still uncertain, but the outer layers play a larger-than-expected role in the generation of the two planets’ magnetic fields. Experiments mimicking the gas planets’ pressures and temperatures are now needed to help the scientists understand the processes that are going on.

For Stevenson, who has studied gas giants for 40 years, the puzzles are the hallmark of a good mission.

“A successful mission is one that surprises us. Science would be boring if it merely confirmed what we previously thought,” he said.

Crater Counts On Pluto, Charon Show Small Kuiper Belt Objects Surprisingly Rare

Using New Horizons data from the Pluto-Charon flyby in 2015, a Southwest Research Institute-led team of scientists have indirectly discovered a distinct and surprising lack of very small objects in the Kuiper Belt. The evidence for the paucity of small Kuiper Belt objects (KBOs) comes from New Horizons imaging that revealed a dearth of small craters on Pluto’s largest satellite, Charon, indicating that impactors from 300 feet to 1 mile (91 meters to 1.6 km) in diameter must also be rare.

The Kuiper Belt is a donut-shaped region of icy bodies beyond the orbit of Neptune. Because small Kuiper Belt objects were some of the “feedstock” from which planets formed, this research provides new insights into how the solar system originated. This research was published in the March 1 issue of the journal Science.

“These smaller Kuiper Belt objects are much too small to really see with any telescopes at such a great distance,” said SwRI’s Dr. Kelsi Singer, the paper’s lead author and a co-investigator of NASA’s New Horizons mission. “New Horizons flying directly through the Kuiper Belt and collecting data there was key to learning about both large and small bodies of the Belt.”

“This breakthrough discovery by New Horizons has deep implications,” added the mission’s principal investigator, Dr. Alan Stern, also of SwRI. “Just as New Horizons revealed Pluto, its moons, and more recently, the KBO nicknamed Ultima Thule in exquisite detail, Dr. Singer’s team revealed key details about the population of KBOs at scales we cannot come close to directly seeing from Earth.”

Craters on solar system objects record the impacts of smaller bodies, providing hints about the history of the object and its place in the solar system. Because Pluto is so far from Earth, little was known about the dwarf planet’s surface until the epic 2015 flyby. Observations of the surfaces of Pluto and Charon revealed a variety of features, including mountains that reach as high as 13,000 feet (4 km) and vast glaciers of nitrogen ice. Geologic processes on Pluto have erased or altered some of the evidence of its impact history, but Charon’s relative geologic stasis has provided a more stable record of impacts.

“A major part of the mission of New Horizons is to better understand the Kuiper Belt,” said Singer, whose research background studying the geology of the icy moons of Saturn and Jupiter positions her to understand the surface processes seen on KBOs. “With the successful flyby of Ultima Thule early this year, we now have three distinct planetary surfaces to study. This paper uses the data from the Pluto-Charon flyby, which indicate fewer small impact craters than expected. And preliminary results from Ultima Thule support this finding.”

Typical planetary models show that 4.6 billion years ago, the solar system formed from the gravitational collapse of a giant molecular cloud. The Sun, the planets and other objects formed as materials within the collapsing cloud clumped together in a process known as accretion. Different models result in different populations and locations of objects in the solar system.

“This surprising lack of small KBOs changes our view of the Kuiper Belt and shows that either its formation or evolution, or both, were somewhat different than those of the asteroid belt between Mars and Jupiter,” said Singer. “Perhaps the asteroid belt has more small bodies than the Kuiper Belt because its population experiences more collisions that break up larger objects into smaller ones.”