Part III – First Will Come Reversal Excursions Then the Flip

A geomagnetic excursion, like a geomagnetic reversal, is a significant change in the Earth’s magnetic field. However, excursions are not strong enough to permanently change the large-scale orientation of the field, but rather hopscotch back and forth northern latitudes. They are usually short-lived decreasing in field intensity, with a variation in pole orientation of up to 45 degrees from the previous position. These events often involve declines in field strength to between 5% and 20% of normal.

Excursions, unlike reversals, are generally not recorded across the entire globe. This is partially due to them not being recorded well within the sedimentary record, but also because they likely do not extend through the entire geomagnetic field. One of the first excursions to be studied was the Laschamp event, dated at around 40,000 years ago. Since this event has also been seen in sites across the globe, it is suggested as one of the few examples of a truly global excursion.

Excursions are less likely to leave evidence that is identifiable in geological records – they can easily be too small to be noticed. Consequently scientists are unsure how frequently they occur. So far 12 have been documented as occurring in the last 780,000 years, which means they happen (on average) at least every 65,000 years.

The Laschamp event was a short reversal of the Earth’s magnetic field. It occurred 41,400 (±2,000) years ago during the last ice age and was first recognized in the late 1960s as a geomagnetic reversal recorded in the Laschamp lava flows in the Clermont-Ferrand district of France. The magnetic excursion has since been demonstrated in geological archives from many parts of the world.

The period of reversed magnetic field was approximately 440 years, with the transition from the normal field lasting approximately 250 years. The reversed field was 75% weaker, whereas the strength dropped to only 5% of the current strength during the transition. This reduction in geomagnetic field strength resulted in more cosmic rays reaching the Earth, causing greater production of the cosmogenic isotopes beryllium 10 and carbon 14. The Laschamp event was the first known geomagnetic excursion and remains the most thoroughly studied among the known geomagnetic excursions.

Coming Next: Part IV – How Geomagnetic Expansion or Contraction Effects Animals and Humans

Part II – New Findings Show a Closer Connection Between Galactic Cosmic Rays, Our Solar System, and Milky Way

Just as the Earth and other planets rotate around our Sun, our solar system has a rotation trajectory around our galaxy Milky Way. And I must say…before I leave this plane of existence, I feel confident future research will show our galaxy, along with neighboring galaxies, will also have a periodicity rotation with cyclical parameters…rotating around what is yet to be discovered.

The Earth is regularly exposed to cosmic rays as it oscillates upward through the galactic disc. Every 60 million years or so, astronomers believe that our Sun and planets cycle northward in the galactic plane. Just as the Earth has her magnetic field, Milky Way has its own. Without the galactic plane’s magnetic field shielding our solar system, we would be at even higher risk of radiation exposure. It is hypnotized that the closer our solar system travels to the galactic center, we note a correlation between this cyclical motion and partial to mass extinctions happening with a fair amount of regularity on Earth over the past 500 million years.

Some scientists have surmised we are in the midst of a sixth mass extinction of plants and animals. An assemblage of researchers have noted the cycle we are currently experiencing may be a high ratio of species die-offs since. Although extinction is a natural phenomenon, it occurs at a natural “background” rate of about one to five species per year. Scientists estimate we’re now losing species at 1,000 to 10,000 times the background rate. However, to keep things in perspective – researchers currently know of about 1.2 million species to be recorded by science. What’s left to be discovered however is very interesting. The number of species that scientists think are left to be discovered is around 8.7 million. Still, new discoveries can change a scenario, and so can the numbers.

I have re-written this article and ones coming 3 or 4 times because of its importance. Some of you might remember an importance decision I made concerning the direction of my research. I had such a strong pull to go beyond the study of our Sun-Earth connection and peeking around the corner to see what’s next. What I hope to show you is that I am finding a very similar pattern of cause and effect, symbiotic relationship between each level of co-existence. I hope you agree and perhaps catch a flavor of my enthusiastic venturous demeanor. If so, pledge your donation to match renewed devotion to this work. If you happen to know Bill Gates, or his neighbor, give him a call.

Coming Next: Part III – First Will Come Reversal Excursions Then the Flip

BREAKING NEWS: PART-I Galactic Cosmic Rays Reaching Levels Never Before Seen

Today’s article will come as no surprise to the Science Of Cycles reader. There have been several articles SOC published regarding this issue going back to 2012. One of the highly contested questions regarding the pole shift is…’where’ on the time line of this cycle do we stand. I had addressed this question in previous articles. A significant and conveying influence to the makings of a magnetic pole reversal is the inundation of galactic cosmic rays, often referred to as ‘cosmic rays’.

NASA’s most recent study on galactic cosmic ray levels reaching Earth’s atmosphere are the highest ever reported. It is of no coincidence today’s GCR levels correspond with one of the lowest solar minimums observed. This is compounded by the Earth’s magnetic field weakening at a rate nobody saw coming. Researchers estimated the field was weakening about 5 percent per ‘century’, but new data revealed the field is actually weakening at 5 percent per ‘decade’, or 10 times faster than thought.

These GCRs are made up of high energy electrons, positrons, and other subatomic particles, which originate in sources outside the solar system and distributed throughout our galaxy Milky Way; hence the name ‘galactic cosmic rays’. Although periods of high solar activity such as solar flares, CMEs (coronal mass ejections) and coronal holes (solar winds) play a significant role in space and earth weather (including various natural phenomenon such as earthquakes, volcanoes, hurricanes and extreme weather) – studies indicate the periods of solar maximum are usually short-lived hovering around the 11 year cycle.

I propose that both solar rays and cosmic rays have an effect on Earth’s atmosphere, mantle, outer and inner core by generating the expansion and contraction of fluids and gas. Additionally, I suggest it is the more powerful highly energetic charged particles racing at nearly the speed of light which has the greater influence to Earth and all living things. It is the radiation from GCRs which can have – a yet to be determined minimal-or-significant measured effect on all forms of life. I would postulate the most sensitive species exposed to increasing radiation would be the most vulnerable – and in fact a significant number has already reached a point of extinction.

Coming Next: Part-II An Understanding of ‘Background’ and ‘Mass’ Extinctions (and why it applies to today’s galactic cosmic rays escalation.)

_______________

Science Of Cycles keeps you tuned-in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

Small, Hardy Planets Most Likely To Survive Death Of Their Stars

Small, hardy planets packed with dense elements have the best chance of avoiding being crushed and swallowed up when their host star dies, new research from the University of Warwick has found.

Astrophysicists from the Astronomy and Astrophysics Group have modelled the chances of different planets being destroyed by tidal forces when their host stars become white dwarfs and have determined the most significant factors that decide whether they avoid destruction.

Their ‘survival guide’ for exoplanets could help guide astronomers locate potential exoplanets around white dwarf stars, as a new generation of even more powerful telescopes is being developed to search for them. Their research is published in the Monthly Notices of the Royal Astronomical Society.

Most stars like our own Sun will run out of fuel eventually and shrink and become white dwarfs. Some orbiting bodies that aren’t destroyed in the maelstrom caused when the star blasts away its outer layers will then be subjected to shifts in tidal forces as the star collapses and becomes super-dense. The gravitational forces exerted on any orbiting planets would be intense and would potentially drag them into new orbits, even pushing some further out in their solar systems.

By modelling the effects of a white dwarf’s change in gravity on orbiting rocky bodies, the researchers have determined the most likely factors that will cause a planet to move within the star’s ‘destruction radius’; the distance from the star where an object held together only by its own gravity will disintegrate due to tidal forces. Within the destruction radius a disc of debris from destroyed planets will form.

Although a planet’s survival is dependent on many factors, the models reveal that the more massive the planet, the more likely that it will be destroyed through tidal interactions.

But destruction is not certain based on mass alone: low viscosity exo-Earths are easily swallowed even if they reside at separations within five times the distance between the centre of the white dwarf and its destruction radius. Saturn’s moon Enceladus — often described as a ‘dirty snowball’ — is a good example of a homogeneous very low viscosity planet.

High viscosity exo-Earths are easily swallowed only if they reside at distances within twice the separation between the centre of the white dwarf and its destruction radius. These planets would be composed entirely of a dense core of heavier elements, with a similar composition to the ‘heavy metal’ planet discovered by another team of University of Warwick astronomers recently. That planet has avoided engulfment because it is as small as an asteroid.

Dr Dimitri Veras, from the University of Warwick’s Department of Physics, said: “The paper is one of the first-ever dedicated studies investigating tidal effects between white dwarfs and planets. This type of modelling will have increasing relevance in upcoming years, when additional rocky bodies are likely to be discovered close to white dwarfs.”

“Our study, while sophisticated in several respects, only treats homogenous rocky planets that are consistent in their structure throughout. A multi-layer planet, like Earth, would be significantly more complicated to calculate but we are investigating the feasibility of doing so too.”

Distance from the star, like the planet’s mass, has a robust correlation with survival or engulfment. There will always be a safe distance from the star and this safe distance depends on many parameters. In general, a rocky homogenous planet which resides at a location from the white dwarf which is beyond about one-third of the distance between Mercury and the Sun is guaranteed to avoid being swallowed from tidal forces.

Dr Veras said: “Our study prompts astronomers to look for rocky planets close to — but just outside of — the destruction radius of the white dwarf. So far observations have focussed on this inner region, but our study demonstrates that rocky planets can survive tidal interactions with the white dwarf in a way which pushes the planets slightly outward.

“Astronomers should also look for geometric signatures in known debris discs. These signatures could be the result of gravitational perturbations from a planet which resides just outside of the destruction radius. In these cases, the discs would have been formed earlier by the crushing of asteroids which periodically approach and enter the destruction radius of the white dwarf.”

The research received support from the UK’s Science and Technology Facilities Council.

Shrinking Moon May Be Generating Moonquakes

The Moon is shrinking as its interior cools, getting more than about 150 feet (50 meters) skinnier over the last several hundred million years. Just as a grape wrinkles as it shrinks down to a raisin, the Moon gets wrinkles as it shrinks. Unlike the flexible skin on a grape, the Moon’s surface crust is brittle, so it breaks as the Moon shrinks, forming “thrust faults” where one section of crust is pushed up over a neighboring part.

“Our analysis gives the first evidence that these faults are still active and likely producing moonquakes today as the Moon continues to gradually cool and shrink,” said Thomas Watters, senior scientist in the Center for Earth and Planetary Studies at the Smithsonian’s National Air and Space Museum in Washington. “Some of these quakes can be fairly strong, around five on the Richter scale.”

These fault scarps resemble small stair-step shaped cliffs when seen from the lunar surface, typically tens of yards (meters) high and extending for a few miles (several kilometers). Astronauts Eugene Cernan and Harrison Schmitt had to zig-zag their lunar rover up and over the cliff face of the Lee-Lincoln fault scarp during the Apollo 17 mission that landed in the Taurus-Littrow valley in 1972.

Watters is lead author of a study that analyzed data from four seismometers placed on the Moon by the Apollo astronauts using an algorithm, or mathematical program, developed to pinpoint quake locations detected by a sparse seismic network. The algorithm gave a better estimate of moonquake locations. Seismometers are instruments that measure the shaking produced by quakes, recording the arrival time and strength of various quake waves to get a location estimate, called an epicenter. The study was published May 13 in Nature Geoscience.

Astronauts placed the instruments on the lunar surface during the Apollo 11, 12, 14, 15, and 16 missions. The Apollo 11 seismometer operated only for three weeks, but the four remaining recorded 28 shallow moonquakes — the type expected to be produced by these faults — from 1969 to 1977. The quakes ranged from about 2 to around 5 on the Richter scale.

Using the revised location estimates from the new algorithm, the team found that eight of the 28 shallow quakes were within 30 kilometers (18.6 miles) of faults visible in lunar images. This is close enough to tentatively attribute the quakes to the faults, since modeling by the team shows that this is the distance over which strong shaking is expected to occur, given the size of these fault scarps. Additionally, the new analysis found that six of the eight quakes happened when the Moon was at or near its apogee, the farthest point from Earth in its orbit. This is where additional tidal stress from Earth’s gravity causes a peak in the total stress, making slip-events along these faults more likely.

“We think it’s very likely that these eight quakes were produced by faults slipping as stress built up when the lunar crust was compressed by global contraction and tidal forces, indicating that the Apollo seismometers recorded the shrinking Moon and the Moon is still tectonically active,” said Watters. The researchers ran 10,000 simulations to calculate the chance of a coincidence producing that many quakes near the faults at the time of greatest stress. They found it is less than 4 percent. Additionally, while other events, such as meteoroid impacts, can produce quakes, they produce a different seismic signature than quakes made by fault slip events.

Other evidence that these faults are active comes from highly detailed images of the Moon by NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft. The Lunar Reconnaissance Orbiter Camera (LROC) has imaged over 3,500 of the fault scarps. Some of these images show landslides or boulders at the bottom of relatively bright patches on the slopes of fault scarps or nearby terrain. Weathering from solar and space radiation gradually darkens material on the lunar surface, so brighter areas indicate regions that are freshly exposed to space, as expected if a recent moonquake sent material sliding down a cliff. Examples of fresh boulder fields are found on the slopes of a fault scarp in the Vitello cluster and examples of possible bright features are associated with faults that occur near craters Gemma Frisius C and Mouchez L. Other LROC fault images show tracks from boulder falls, which would be expected if the fault slipped and the resulting quake sent boulders rolling down the cliff slope. These tracks are evidence of a recent quake because they should be erased relatively quickly, in geologic time scales, by the constant rain of micrometeoroid impacts on the Moon. Boulder tracks near faults in Schrödinger basin have been attributed to recent boulder falls induced by seismic shaking.

Additionally, one of the revised moonquake epicenters is just 13 kilometers (8 miles) from the Lee-Lincoln scarp traversed by the Apollo 17 astronauts. The astronauts also examined boulders and boulder tracks on the slope of North Massif near the landing site. A large landslide on South Massif that covered the southern segment of the Lee-Lincoln scarp is further evidence of possible moonquakes generated by fault slip events.

“It’s really remarkable to see how data from nearly 50 years ago and from the LRO mission has been combined to advance our understanding of the Moon while suggesting where future missions intent on studying the Moon’s interior processes should go,” said LRO Project Scientist John Keller of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Since LRO has been photographing the lunar surface since 2009, the team would like to compare pictures of specific fault regions from different times to see if there is any evidence of recent moonquake activity. Additionally, “Establishing a new network of seismometers on the lunar surface should be a priority for human exploration of the Moon, both to learn more about the Moon’s interior and to determine how much of a hazard moonquakes present,” said co-author Renee Weber, a planetary seismologist at NASA’s Marshall Space Flight Center in Huntsville, Alabama.

The Moon isn’t the only world in our solar system experiencing some shrinkage with age. Mercury has enormous thrust faults — up to about 600 miles (1,000 kilometers) long and over a mile (3 kilometers) high — that are significantly larger relative to its size than those on the Moon, indicating it shrank much more than the Moon. Since rocky worlds expand when they heat up and contract as they cool, Mercury’s large faults reveal that is was likely hot enough to be completely molten after its formation. Scientists trying to reconstruct the Moon’s origin wonder whether the same happened to the Moon, or if instead it was only partially molten, perhaps with a magma ocean over a more slowly heating deep interior. The relatively small size of the Moon’s fault scarps is in line with the more subtle contraction expected from a partially molten scenario.

NASA will send the first woman, and next man, to the Moon by 2024. These American astronauts will take a human landing system from the Gateway in lunar orbit, and land on the lunar South Pole. The agency will establish sustainable missions by 2028, then we’ll take what we learn on the Moon, and go to Mars.

This research was funded by NASA’s LRO project, with additional support from the Natural Sciences and Engineering Research Council of Canada. LRO is managed by NASA Goddard for the Science Mission Directorate at NASA Headquarters in Washington. The LROC is managed at Arizona State University in Tempe.

Matter Around A Young Star Helps Astronomers Explore Our Stellar History

Astronomers map the substance aluminum monoxide (AlO) in a cloud around a distant young star — Origin Source I. The finding clarifies some important details about how our solar system, and ultimately we, came to be. The cloud’s limited distribution suggests AlO gas rapidly condenses to solid grains, which hints at what an early stage of our solar evolution looked like.

Professor Shogo Tachibana of the UTokyo Organization for Planetary and Space Science has a passion for space. From small things like meteorites to enormous things like stars and nebulae — huge clouds of gas and dust in space — he is driven to explore our solar system’s origins.

“I have always wondered about the evolution of our solar system, of what must have taken place all those billions of years ago,” he said. “This question leads me to investigate the physics and chemistry of asteroids and meteorites.”

Space rocks of all kinds greatly interest astronomers as these rocks can remain largely unchanged since the time our sun and planets formed from a swirling cloud of gas and dust. They contain records of the conditions at that time — generally considered to be 4.56 billion years ago — and their properties such as composition can tell us about these early conditions.

“On my desk is a small piece of the Allende meteorite, which fell to Earth in 1969. It’s mostly dark but there are some scattered white inclusions (foreign bodies enclosed in the rock), and these are important,” continued Tachibana. “These speckles are calcium and aluminum-rich inclusions (CAIs), which were the first solid objects formed in our solar system.”

Minerals present in CAIs indicate that our young solar system must have been extremely hot. Physical techniques for dating these minerals reveal a fairly specific age for the solar system. However, Tachibana and colleagues wished to expand on the details of this stage of evolution.

“There are no time machines to explore our own past, so we wanted to see a young star that could share traits with our own,” said Tachibana. “With the Atacama Large Millimeter/submillimeter Array (ALMA), we found the emission lines — a chemical fingerprint — for AlO in outflows from the circumstellar disk (gas and dust surrounding a star) of the massive young star candidate Orion Source I. It’s not exactly like our sun, but it’s a good start.”

ALMA was the ideal tool as it offers extremely high resolution and sensitivity to reveal the distribution of AlO around the star. No other instrument can presently make such observations.

“Thanks to ALMA, we discovered the distribution of AlO around a young star for the first time. The distribution of AlO is limited to the hot region of the outflow from the disk. This implies that AlO rapidly condenses as solid grains — similar to CAIs in our solar system,” explained Tachibana. “This data allows us to place tighter constraints on hypotheses that describe our own stellar evolution. But there’s still much work to do.”

The team now plans to explore gas and solid molecules around other stars to gather data useful to further refine solar system models.

Gravitational Forces In Protoplanetary Disks May Push Super-Earths Close To Their Stars

The galaxy is littered with planetary systems vastly different from ours. In the solar system, the planet closest to the Sun — Mercury, with an orbit of 88 days — is also the smallest. But NASA’s Kepler spacecraft has discovered thousands of systems full of very large planets — called super-Earths — in very small orbits that zip around their host star several times every 10 days.

Now, researchers may have a better understanding how such planets formed.

A team of Penn State-led astronomers found that as planets form out of the chaotic churn of gravitational, hydrodynamic — or, drag — and magnetic forces and collisions within the dusty, gaseous protoplanetary disk that surrounds a star as a planetary system starts to form, the orbits of these planets eventually get in synch, causing them to slide — follow the leader-style — toward the star. The team’s computer simulations result in planetary systems with properties that match up with those of actual planetary systems observed by the Kepler space telescope of solar systems. Both simulations and observations show large, rocky super-Earths orbiting very close to their host stars, according to Daniel Carrera, assistant research professor of astronomy at Penn State’s Eberly College of Science.

He said the simulation is a step toward understanding why super-Earths gather so close to their host stars. The simulations may also shed light on why super-Earths are often located so close to their host star where there doesn’t seem to be enough solid material in the protoplanetary disk to form a planet, let alone a big planet, according to the researchers, who report their findings in the Monthly Notices of the Royal Astronomical Society.

“When stars are very young, they are surrounded by a disc that is mostly gas with some dust — and that dust grows into the planets, like the Earth and these super-Earths,” said Carrera. “But the particular puzzle for us is that this disc doesn’t go the all way to the star — there’s a cavity there. And yet we see these planets closer to the star than the edge of that disc.”

The astronomers’ computer simulation shows that, over time, the planets’ and disk’s gravitational forces lock the planets into synchronized orbits — resonance — with each other. The planets then begin to migrate in unison, with some moving closer to the edge of the disk. The combination of the gas disk affecting the outer planets and the gravitational interactions among the outer and inner planets can continue to push the inner planets very closer to the star, even interior to the edge of the disk.

“With the first discoveries of Jupiter-size exoplanets orbiting close to their host star, astronomers were inspired to develop multiple models for how such planets could form, including chaotic interactions in multiple planet systems, tidal effects and migration through the gas disk,” said Eric Ford, professor of astronomy and astrophysics, director of Penn State’s Center for Exoplanets and Habitable Worlds and Institute for CyberScience (ICS) faculty co-hire. “However, these models did not predict the more recent discoveries of super-Earth-size planets orbiting so close to their host star. Some astronomers had suggested that such planets must have formed very near their current locations. Our work is important because it demonstrates how short-period super-Earth-size planets could have formed and migrated to their current locations thanks to the complex interactions of multiple planet systems.”

Carrera said more work remains to confirm that the theory is correct.

“We’ve shown that it’s possible for planets to get that close to a star in this simulation, but it doesn’t mean that it’s the only way that the universe chose to make them,” said Carrera. “Someone might come up with a different idea of a way to get the planets that close to a star. And, so, the next step is to test the idea, revise it, make predictions that you can test against observations.”

Future research may also explore why our super-Earthless solar system is different from most other solar systems, Carrera added.

“Super-Earths in very close orbits are by far the most common type of exoplanet that we observe, and yet they don’t exist in our own solar system and that makes us wonder why,” said Carrera.

According to the researchers, the best published estimates suggest that about 30 percent of solar-like stars have some planets close to the host star than the Earth is to the Sun. However, they note that additional planets are could go undetected, especially small planets far from their star.

Andre Izidoro, researcher, Sao Paulo State University — UNESP, worked with Carrera and Ford on the study, that began thanks to collaborations formed as part of NASA’s Nexus for Exoplanet Systems Science.

Computations for this research were performed on the Penn State’s Institute for CyberScience Advanced CyberInfrastructure (ICS-ACI) and the CyberLAMP computer cluster. The National Science Foundation, NASA and Penn State’s Center for Exoplanets and Habitable Worlds supported this work.