Our Solar System’s ‘Shocking’ Origin Story

According to one longstanding theory, our Solar System’s formation was triggered by a shock wave from an exploding supernova. The shock wave injected material from the exploding star into a neighboring cloud of dust and gas, causing it to collapse in on itself and form the Sun and its surrounding planets.

New work from Carnegie’s Alan Boss offers fresh evidence supporting this theory, modeling the Solar System’s formation beyond the initial cloud collapse and into the intermediate stages of star formation. It is published by the Astrophysical Journal.

One very important constraint for testing theories of Solar System formation is meteorite chemistry. Meteorites retain a record of the elements, isotopes, and compounds that existed in the system’s earliest days. One type, called carbonaceous chondrites, includes some of the most-primitive known samples.

An interesting component of chondrites’ makeup is something called short-lived radioactive isotopes. Isotopes are versions of elements with the same number of protons, but a different number of neutrons. Sometimes, as is the case with radioactive isotopes, the number of neutrons present in the nucleus can make the isotope unstable. To gain stability, the isotope releases energetic particles, which alters its number of protons and neutrons, transmuting it into another element.

Some isotopes that existed when the Solar System formed are radioactive and have decay rates that caused them to become extinct within tens to hundreds of million years. The fact that these isotopes still existed when chondrites formed is shown by the abundances of their stable decay products — also called daughter isotopes — found in some primitive chondrites. Measuring the amount of these daughter isotopes can tell scientists when, and possibly how, the chondrites formed.

A recent analysis of chondrites by Carnegie’s Myriam Telus was concerned with iron-60, a short-lived radioactive isotope that decays into nickel-60. It is only created in significant amounts by nuclear reactions inside certain kinds of stars, including supernovae or what are called asymptotic giant branch (AGB) stars.

Because all the iron-60 from the Solar System’s formation has long since decayed, Telus’ research, published in Geochimica et Cosmochimica Acta, focused on its daughter product, nickel-60. The amount of nickel-60 found in meteorite samples — particularly in comparison to the amount of stable, “ordinary” iron-56 — can indicate how much iron-60 was present when the larger parent body from which the meteorite broke off was formed. There are not many options for how an excess of iron-60 — which later decayed into nickel-60 — could have gotten into a primitive Solar System object in the first place — one of them being a supernova.

While her research did not find a “smoking gun,” definitively proving that the radioactive isotopes were injected by a shock wave, Telus did show that the amount of Fe-60 present in the early Solar System is consistent with a supernova origin.

Taking this latest meteorite research into account, Boss revisited his earlier models of shock wave-triggered cloud collapse, extending his computational models beyond the initial collapse and into the intermediate stages of star formation, when the Sun was first being created, an important next step in tying together Solar System origin modeling and meteorite sample analysis.

“My findings indicate that a supernova shock wave is still the most-plausible origin story for explaining the short lived radioactive isotopes in our Solar System,” Boss said.

Boss dedicated his paper to the late Sandra Keiser, a long-term collaborator, who provided computational and programming support at Carnegie’s Department of Terrestrial Magnetism for more than two decades. Keiser died in March.

BREAKING NEWS: Cosmic Ray Flux, Geo-Political Unrest, Wars, and Earth Changing Events

What I am about to tell you will need to be categorized as pseudo-science and I take full responsibility for publishing this report and I must address this as theoretical conjecture (see summary). This area of my research has not been peer-reviewed, however, the content I am about to present is factual and does have historic repeatable concurrence. In other words, the results are not by accident, coincidence, or luck. What is still yet unknown is the exact when, how, where mechanics of cosmic rays flow effects human/animal emotions and behavior.

The following does not meet the disclaimer of “conjecture”; it is strongly peer-reviewed factual data.

The next two paragraphs address the connection between periods of charged particle fluctuation i.e. cosmic rays – and human behavior especially its effect on the brains “hippocampus”. The hippocampus is a small organ located within the brain’s medial temporal lobe forming an important part of the limbic system – the region that regulates emotions. It is also enables our ability to maintain long and short-term memory, most significantly with long-term memory. This organ plays an important role in a person’s physical coordination, also elicits the feeling of being contiguous, connected, or part-of.

The science community, such as NASA, as well as the medical community have been studying the effects of charged particles on human physical and emotional behavior since the 1970’s. Both disciplines are fully aware of what external magnetic stimulus can do in both advantageous and detrimental ways.

Note: Before I continue a quick mention to those who have supported my work. I now have been able to join three journals and hope to sign-up and attend a coming physics symposium in the near future. I hope to continue this journey and bring the latest research and discoveries directly to you. If you can help, see banners at bottom. Cheers, Mitch

I know one can get lost with too much information, therefore, I think it best to break this up into two or maybe three parts. Remember, this article is to address the connection between cosmic rays, earth changing events such as earthquakes, volcanoes, various extreme weather episodes – and now to include wars and societal discord.

Some of you may have noticed the following statement I made in my July 25th article: “I would suggest the current mode of global political dysfunction, may have some roots in history showing a pattern of “what happens below, reflects what happens above”. This suggest the turmoil which results from earth changing events appears to be in-sync with emotional geo-political unrest”.

– Watch North Korea and Eastern Europe –

Above I addressed the what and how cosmic rays can affect humans (and of course Earth itself), now to address the negative consequences of a continuing upsurge of cosmic ray inundation. As it relates to the space community, they already know the effects on astronauts who occupy the International Space Station, and now a heavy concentration of study on the long-term effects of a planned journey to Mars. Similarly regarding the medical community, well documented study’s demonstrate the imbalance of magnetic stimulus can cause an array of emotional symptoms such as depression, anxiety, disassociation, and hyper-sensitivity.

Time to wind this up and I will present a Part-II coming next.

The following will need to be considered as conjecture, although based on historical data:

To summarize, and I take this extremely seriously, I am going on record with an educated hunch (prediction) which I believe is only the second time I’ve done so over my 22 year history with Earth Changes TV, then Earth Changes Media, and now Science Of Cycles. In conjunction with my 28 day window as related to the Total Solar Eclipse occurring Aug. 21 2017 – which consist of 14 days prior to [eclipse] and 14 days after, will begin on this coming Monday (Aug. 7th) and ends on Monday Sept. 4th 2017, I believe the following will have an 80% + chance of occurring.

Thank you for your continued support.

 Coming Next: Part-II The Clock Starts Clicking on Monday

Sun’s Core Rotates Four Times Faster Than Its Surface

The Sun’s core rotates nearly four times faster than the sun’s surface, according to new findings by an international team of astronomers. Scientists had assumed the core was rotating like a merry-go-round at about the same speed as the surface.

“The most likely explanation is that this core rotation is left over from the period when the Sun formed, some 4.6 billion years ago,” said Roger Ulrich, a UCLA professor emeritus of astronomy, who has studied the sun’s interior for more than 40 years and co-author of the study that was published today in the journal Astronomy and Astrophysics. “It’s a surprise, and exciting to think we might have uncovered a relic of what the Sun was like when it first formed.”

The rotation of the solar core may give a clue to how the sun formed. After the Sun formed, the solar wind likely slowed the rotation of the outer part of the Sun, he said. The rotation might also impact sunspots, which also rotate, Ulrich said. Sunspots can be enormous; a single sunspot can even be larger than the Earth.

The researchers studied surface acoustic waves in the Sun’s atmosphere, some of which penetrate to the Sun’s core, where they interact with gravity waves that have a sloshing motion similar to how water would move in a half-filled tanker truck driving on a curvy mountain road. From those observations, they detected the sloshing motions of the solar core. By carefully measuring the acoustic waves, the researchers precisely determined the time it takes an acoustic wave to travel from the surface to the center of the Sun and back again. That travel time turns out to be influenced a slight amount by the sloshing motion of the gravity waves, Ulrich said.

The researchers identified the sloshing motion and made the calculations using 16 years of observations from an instrument called GOLF (Global Oscillations at Low Frequency) on a spacecraft called SoHO (the Solar and Heliospheric Observatory)—a joint project of the European Space Agency and NASA. The method was developed by the researchers, led by astronomer Eric Fossat of the Observatoire de la Côte d’Azur in Nice, France. Patrick Boumier with France’s Institut d’Astrophysique Spatiale is GOLF’s principal investigator and a co-author of the study.

The idea that the solar core could be rotating more rapidly than the surface has been considered for more than 20 years, but has never before been measured.

The core of the Sun differs from its surface in another way as well. The core has a temperature of approximately 29 million degrees Fahrenheit, which is 15.7 million Kelvin. The sun’s surface is “only” about 10,000 degrees Fahrenheit, or 5,800 Kelvin.

Ulrich worked with the GOLF science team, analyzing and interpreting the data for 15 years. Ulrich received funding from NASA for his research. The GOLF instrument was funded primarily by the European Space Agency.

SoHO was launched on Dec. 2, 1995 to study the Sun from its core to the outer corona and the solar wind; the spacecraft continues to operate.

IMPORTANT UPDATE: New Research Shows Quake-Causing Cracks on Pacific Sea Floor

New research published in the journal ‘Science Advances’, has focused their study off the west coast of North America giving seismologists a better understanding of what one scientist describes as “the single greatest geophysical hazard to the continental United States”.

Zach Eilon, a geophysicist at the University of California Santa Barbara, has developed a new method that uses an array of scientific instruments spread across the sea floor to measure shock waves that travel through the planet’s crust. “Because we think this particular phenomenon is strongly related to temperature and to molten rock beneath the Earth, this is a technique that can be applied to volcanoes to get a better sense of their plumbing system,” says Eilon.

Eilon’s research targets the Juan de Fuca plate, which runs several hundred kilometers off the coast between southern British Columbia and northern California and is the youngest and smallest of the planet’s 13 major tectonic plates. The collision zone in this region has the potential to generate massive quakes and destructive tsunamis, which occur when the plates overcome friction and slip past one another, quickly displacing huge amounts of water.

His data suggest the interior of the Juan de Fuca plate is cooler than previously believed, meaning the edge that is being pushed westward below the North American plate is able to bring with it more water. The water acts as a lubricant and increases the likelihood of the slipping that leads to a quake.

Geoff Abers, an earth-sciences professor at Cornell University who co-authored the paper with Eilon, said improvements in sea-floor technology and the sheer number of sensors that were deployed make this project the first time researchers have been able to study an entire tectonic plate in the ocean. “We’re not directly looking at the just earthquake cycles, but we’re looking at the broader, theoretical framework for how the Earth works and getting a much better handle on that,” Abers said.

Thank you for your continued support. We’re now about half way there.

COMING NEXT: WAR AND EARTHQUAKES; IS THERE A CONNECTION

JUST IN: New Study Affirms Mantle Plumes Source of Heated Surface

As outlined in my article Cosmic Ray Penetration More Prevalent Than Realized, a new study published July 27th in the journal ‘Science’, identifies mantle plumes – viscous molten rock coming from the Earth’s outer core – as the source heated surfaces which include volcanoes and ocean bottom fissures.

For more than 2 decades, scientists have pondered the nature of these mysterious regions, sometimes called Ultra Low Velocity Zones (ULVZs). Researchers examining one below Iceland at a depth of nearly 3000 kilometers, now have their answer. This discovery shows molten plumes that shoot out as roots of hot rock that slowly rise through the mantle to feeding a system of volcanoes and fissures.

Earth scientists have long suspected that upwellings in these mantle convection currents would manifest themselves as the plumes responsible for Earth’s volcanic hot spots. Now we have started to see them with sophisticated computer models that use the waves from large earthquakes to create CT scan–like tomographic pictures of Earth’s interior; says Barbara Romanowicz, a seismologist at the University of California, Berkeley, and led author of the study.

Thank you for your continued support. We’re now about half way there.

Coming Next: History of War and Quakes

Ocean Circulation, Coupled With Trade Wind Changes, Efficiently Limits Shifting Of Tropical Rainfall Patterns

The Intertropical Convergence Zone (ITCZ), also known as the doldrums, is one of the dramatic features of Earth’s climate system. Prominent enough to be seen from space, the ITCZ appears in satellite images as a band of bright clouds around the tropics. Here, moist warm air accumulates in this atmospheric region near the equator, where the ocean and atmosphere heavily interact. Intense solar radiation and calm, warm ocean waters produce an area of high humidity, ascending air, and rainfall, which is fed by converging trade winds from the Northern and Southern Hemispheres. The convected air forms clusters of thunderstorms characteristic of the ITCZ, releasing heat before moving away from the ITCZ—toward the poles—cooling and descending in the subtropics. This circulation completes the Hadley cells of the ITCZ, which play an important role in balancing Earth’s energy budget—transporting energy between the hemispheres and away from the equator.

However, the position of the ITCZ isn’t static. In order to transport this energy, the ITCZ and Hadley cells shift seasonally between the Northern and Southern Hemispheres, residing in the one that’s most strongly heated from the sun and radiant heat from the Earth’s surface, which on average yearly is the Northern Hemisphere. Accompanying these shifts can be prolonged periods of violent storms or severe drought, which significantly impacts human populations living in its path.

Scientists are therefore keen to understand the climate controls that drive the north-south movement of the ITCZ over the seasonal cycle, as well as on inter-annual to decadal timescales in Earth’s paleoclimatology up through today. Researchers have traditionally approached this issue from the perspective of the atmosphere’s behavior and understanding rainfall, but anecdotal evidence from models with a dynamic ocean has suggested that the ocean’s sensitivity to climate changes could affect the ITCZ’s response. Now, a study from MIT graduate student Brian Green and the Cecil and Ida Green Professor of Oceanography John Marshall from the Program in Atmospheres, Oceans and Climate in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) published in the American Meteorological Society’s Journal of Climate, investigates the role that the ocean plays in modulating the ITCZ’s position and appreciates its sensitivity when the Northern Hemisphere is heated. In so doing, the work gives climate scientists a better understanding of what causes changes to tropical rainfall.

“In the past decade or so there’s been a lot of research studying controls on the north-south position of the ITCZ, particularly from this energy balance perspective. … And this has normally been done in the context of ignoring the adjustment of the ocean circulation—the ocean circulation is either forcing these [ITCZ] shifts or passively responding to changes in the atmosphere above,” Green says. “But we know, particularly in the tropics, that the ocean circulation is very tightly coupled through the trade winds to atmospheric circulation and the ITCZ position, so what we wanted to do was investigate how that ocean circulation might feedback on the energy balance that controls that ITCZ position, and how strong that feedback might be.”

To examine this, Green and Marshall performed experiments in a global climate model with a coupled atmosphere and ocean, and observed how the ocean circulation’s cross-equatorial energy transport and its associated surface energy fluxes affected the ITCZ’s response when they imposed an inter-hemispheric heating contrast. Using a simplified model that omitted landmasses, clouds, and monsoon dynamics, while keeping a fully circulating atmosphere that interacts with radiation highlighted the ocean’s effect while minimized other confounding variables that could mask the results. The addition of north-south ocean ridges, creating a large and small basin, mimicked the behavior of the Earth’s Atlantic’s meridional overturning circulation and the Pacific Ocean.

Green and Marshall then ran the asymmetrically heated planet simulations in two ocean configurations and compared the ITCZ responses. The first used a stationary “slab ocean,” where the thermal properties were specified so that it mimicked the fully coupled model before perturbation, but was unable to respond to the heating. The second incorporated a dynamic ocean circulation. By forcing the models identically, they could quantify the ocean circulation’s impact on the ITCZ.

“We found in the case where there’s a fully coupled, dynamic ocean, the northward shift of the ITCZ was damped by a factor of four compared to the passive ocean. So that’s hinting that the ocean is one of the leading controls on the position of the ITCZ,” Green says. “It’s a significant damping of the response of the atmosphere, and the reason behind this can just be diagnosed from that energy balance.”

In the dynamic ocean model, they found that when they heat the simulated ocean-covered planet, eddies export some heat into the tropical atmosphere from the extra-tropics, which causes the Hadley cells to respond—the Northern Hemisphere cell to weaken and the Southern Hemisphere cell to strengthen. This transports heat southward through the atmosphere. Concurrently, the ITCZ shifts northward; associated with this are changes in the trade winds—the surface branch of the Hadley cells—and the surface wind stress near the equator. The surface ocean feels this change in winds, which energizes an anomalous ocean circulation and moves water mass southwards across the equator in both hemispheres, carrying heat with it. Once this surface water reaches the extra-tropics, the ocean pumps it downwards where it returns northward across the equator, cooler and at depth. This temperature contrast between the warm surface cross-equatorial flow and the cooler deeper return flow sets the heat transported by the ocean circulation.

“In the slab ocean case, only the atmosphere can move heat across the equator; whereas in our fully coupled case, we see that the ocean is the most strongly compensating component of the system, transporting the majority of the forcing across the equator.” Green says. “So from the atmosphere’s perspective, it doesn’t even feel the full effect of that heating that we’re imposing. And as a result, it has to transport less heat across the equator and shift the ITCZ less.” Green adds that the response of the large basin ocean circulation broadly mimics the Indian Ocean’s yearly average circulation.

Marshall notes that the ability of the wind-driven ocean circulation to damp ITCZ shifts represents a previously unappreciated constraint on the atmosphere’s energy budget: “We showed that the ITCZ cannot move very far away from the equator, even in very ‘extreme’ climates,” indicating that the position of the ITCZ may be much less sensitive to inter-hemispheric heating contrasts than previously thought.”

Green and Marshall are currently expanding upon this work. With the help of David McGee, the Kerr-Mcgee Career Development Assistant Professor in EAPS, and postdoc Eduardo Moreno-Chamarro, the pair are applying this to the paleoclimate record during Heimrich events, when the Earth experiences strong cooling, looking for ITCZ shifts.

They’re also investigating the decomposition of heat and mass transport between the atmosphere and the ocean, as well as between the Earth’s oceans. “The physics that control each of those oceans’ responses are dramatically different, certainly between the Pacific and the Atlantic oceans,” Green says. “Right now, we’re working to understand how the mass transports of the atmosphere and ocean are coupled. While we know that they’re constrained to overturn in the same sense, they’re not actually constrained to transport an identical amount of mass, so you could further enhance or weaken the damping by the ocean circulation by affecting how strongly the mass transports are coupled.”

Earth-Like Atmosphere May Not Survive Proxima B’s Orbit

Proxima b, an Earth-size planet right outside our solar system in the habitable zone of its star, may not be able to keep a grip on its atmosphere, leaving the surface exposed to harmful stellar radiation and reducing its potential for habitability.

At only four light-years away, Proxima b is our closest known extra-solar neighbor. However, due to the fact that it hasn’t been seen crossing in front of its host star, the exoplanet eludes the usual method for learning about its atmosphere. Instead, scientists must rely on models to understand whether the exoplanet is habitable.

One such computer model considered what would happen if Earth orbited Proxima Centauri, our nearest stellar neighbor and Proxima b’s host star, at the same orbit as Proxima b. The NASA study, published on July 24, 2017, in The Astrophysical Journal Letters, suggests Earth’s atmosphere wouldn’t survive in close proximity to the violent red dwarf.

“We decided to take the only habitable planet we know of so far — Earth — and put it where Proxima b is,” said Katherine Garcia-Sage, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland, and lead author of the study. The research was supported by NASA’s NExSS coalition — leading the search for life on planets beyond our solar system — and the NASA Astrobiology Institute.

Just because Proxima b’s orbit is in the habitable zone, which is the distance from its host star where water could pool on a planet’s surface, doesn’t mean it’s habitable. It doesn’t take into account, for example, whether water actually exists on the planet, or whether an atmosphere could survive at that orbit. Atmospheres are also essential for life as we know it: Having the right atmosphere allows for climate regulation, the maintenance of a water-friendly surface pressure, shielding from hazardous space weather, and the housing of life’s chemical building blocks.

Garcia-Sage and her colleagues’ computer model used Earth’s atmosphere, magnetic field and gravity as proxies for Proxima b’s. They also calculated how much radiation Proxima Centauri produces on average, based on observations from NASA’s Chandra X-ray Observatory.

With these data, their model simulates how the host star’s intense radiation and frequent flaring affect the exoplanet’s atmosphere.

“The question is, how much of the atmosphere is lost, and how quickly does that process occur?” said Ofer Cohen, a space scientist at the University of Massachusetts, Lowell and co-author of the study. “If we estimate that time, we can calculate how long it takes the atmosphere to completely escape — and compare that to the planet’s lifetime.”

An active red dwarf star like Proxima Centauri strips away atmosphere when high-energy extreme ultraviolet radiation ionizes atmospheric gases, knocking off electrons and producing a swath of electrically charged particles. In this process, the newly formed electrons gain enough energy that they can readily escape the planet’s gravity and race out of the atmosphere.

Opposite charges attract, so as more negatively charged electrons leave the atmosphere, they create a powerful charge separation that pulls positively charged ions along with them, out into space.

In Proxima Centauri’s habitable zone, Proxima b encounters bouts of extreme ultraviolet radiation hundreds of times greater than Earth does from the sun. That radiation generates enough energy to strip away not just the lightest molecules — hydrogen — but also, over time, heavier elements such as oxygen and nitrogen.

The model shows Proxima Centauri’s powerful radiation drains the Earth-like atmosphere as much as 10,000 times faster than what happens at Earth.

“This was a simple calculation based on average activity from the host star,” Garcia-Sage said. “It doesn’t consider variations like extreme heating in the star’s atmosphere or violent stellar disturbances to the exoplanet’s magnetic field — things we’d expect provide even more ionizing radiation and atmospheric escape.”

To understand how the process can vary, the scientists looked at two other factors that exacerbate atmospheric loss. First, they considered the temperature of the neutral atmosphere, called the thermosphere. They found as the thermosphere heats with more stellar radiation, atmospheric escape increases.

The scientists also considered the size of the region over which atmospheric escape happens, called the polar cap. Planets are most sensitive to magnetic effects at their magnetic poles. When magnetic field lines at the poles are closed, the polar cap is limited and charged particles remain trapped near the planet. On the other hand, greater escape occurs when magnetic field lines are open, providing a one-way route to space.

“This study looks at an under-appreciated aspect of habitability, which is atmospheric loss in the context of stellar physics,” said Shawn Domagal-Goldman, a Goddard space scientist not involved in the study. “Planets have lots of different interacting systems, and it’s important to make sure we include these interactions in our models.”

The scientists show that with the highest thermosphere temperatures and a completely open magnetic field, Proxima b could lose an amount equal to the entirety of Earth’s atmosphere in 100 million years — that’s just a fraction of Proxima b’s 4 billion years thus far. When the scientists assumed the lowest temperatures and a closed magnetic field, that much mass escapes over 2 billion years.

“Things can get interesting if an exoplanet holds on to its atmosphere, but Proxima b’s atmospheric loss rates here are so high that habitability is implausible,” said Jeremy Drake, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics and co-author of the study. “This questions the habitability of planets around such red dwarfs in general.”

Red dwarfs like Proxima Centauri or the TRAPPIST-1 star are often the target of exoplanet hunts, because they are the coolest, smallest and most common stars in the galaxy. Because they are cooler and dimmer, planets have to maintain tight orbits for liquid water to be present.

But unless the atmospheric loss is counteracted by some other process — such as a massive amount of volcanic activity or comet bombardment — this close proximity, scientists are finding more often, is not promising for an atmosphere’s survival or sustainability.