Moving Closer to Understanding of Universe’s Most Powerful Explosions

Good fortune and cutting-edge scientific equipment have allowed scientists to observe a Gamma Ray Burst jet with a radio telescope and detect the polarization of radio waves within it for the first time – moving us closer to an understanding of what causes the universe’s most powerful explosions.

Gamma Ray Bursts (GRBs) are the most energetic explosions in the universe, beaming out mighty jets which travel through space at over 99.9% the speed of light, as a star much more massive than our Sun collapses at the end of its life to produce a black hole. The study was published in Astrophysical Journal Letters.

CLICK IMAGE TO ENLARGE

Studying the light from Gamma Ray Burst jets as we detect it travelling across space is our best hope of understanding how these powerful jets are formed, but scientists need to be quick to get their telescopes into position and get the best data. The detection of polarized radio waves from a burst’s jet, made possible by a new generation of advanced radio telescopes, offers new clues to this mystery.

The light from this particular event, known as GRB 190114C, which exploded with the force of millions of Suns’ worth of TNT about 4.5 billion years ago, reached NASA’s Neil Gehrels Swift Observatory on Jan 14, 2019.

A rapid alert from Swift allowed the research team to direct the Atacama Large Millimeter/Sub-millimeter Array (ALMA) telescope in Chile to observe the burst just two hours after Swift discovered it. Two hours later the team was able to observe the GRB from the Karl G. Jansky Very Large Array (VLA) telescope when it became visible in New Mexico, USA.

Combining the measurements from these observatories allowed the research team to determine the structure of magnetic fields within the jet itself, which affects how the radio light is polarized. Theories predict different arrangements of magnetic fields within the jet depending on the fields’ origin, so capturing radio data enabled the researchers to test these theories with observations from telescopes for the first time.

The research team, from the University of Bath, Northwestern University, the Open University of Israel, Harvard University, California State University in Sacramento, the Max Planck Institute in Garching, and Liverpool John Moores University discovered that only 0.8% of the jet light was polarized, meaning that jet’s magnetic field was only ordered over relatively small patches – each less than about 1% of the diameter of the jet. Larger patches would have produced more polarized light.

These measurements suggest that magnetic fields may play a less significant structural role in GRB jets than previously thought. This helps us narrow down the possible explanations for what causes and powers these extraordinary explosions.

First author Dr. Tanmoy Laskar, from the University of Bath’s Astrophysics group, said: “We want to understand why some stars produce these extraordinary jets when they die, and the mechanism by which these jets are fuelled – the fastest known outflows in the universe, moving at speeds close to that of light and shining with the incredible luminosity of over a billion Suns combined.

“I was in a cab on my way to O’Hare airport in Chicago, following a visit with collaborators when the burst went off. The extreme brightness of this event and the fact that it was visible in Chile right away made it a prime target for our study, and so I immediately contacted ALMA to say we were going to observe this one, in the hope of detecting the first radio polarization signal.

“It was fortuitous that the target was well placed in the sky for observations with both ALMA in Chile and the VLA in New Mexico. Both facilities responded quickly and the weather was excellent. We then spent two months in a painstaking process to make sure our measurement was genuine and free from instrumental effects. Everything checked out, and that was exciting.

Dr. Kate Alexander, who led the VLA observations, said: “The lower frequency data from the VLA helped confirm that we were seeing the light from the jet itself, rather than from the interaction of the jet with its environment.”

Dr. Laskar added: “This measurement opens a new window into GRB science and the studies of energetic astrophysical jets. We would like to understand whether the low level of polarization measured in this event is characteristic of all GRBs, and if so, what this could tell us about the magnetic structures in GRB jets and the role of magnetic fields in powering jets throughout the universe.”

Professor Carole Mundell, Head of Astrophysics at the University of Bath, added: “The exquisite sensitivity of ALMA and rapid response of the telescopes has, for the first time, allowed us to swiftly and accurately measure the degree of polarization of microwaves from a GRB afterglow just two hours after the blast and probe the magnetic fields that are thought to drive these powerful, ultra-fast outflows.”

The research team plans to hunt for more GRBs to continue to unravel the mysteries of the biggest explosions in the universe.

Part-VIII Just Where Are We in this Cycle of Magnetic Reversal?

Here we are now, in Part VIII of this series, and I would think a great question to ask would be “Where in this layered multitude of decadal, centennial, and millennial magnetic reversal cycles are we?” Current studies suggest we are further along the process indicating we could be just several decades, or perhaps a century or two away from a full magnetic reversal. Like all historic magnetic reversals, the process takes a few thousand years to develop. With each passing decade from the previous cycle, the intensity of charged particles increase as the Earth’s magnetic field decreases.

My research suggest the current influx of cosmic rays has increased over the last few decades, with noticeable increase over the last two years. Data from the Swarm satellite have shown the magnetic field is starting to weaken faster than in the past. Previously, researchers estimated the field was weakening about 5 percent per century, but the new data revealed the field is actually weakening at 5 percent per decade, or 10 times faster than thought. As such, rather than the full flip occurring in about 2,000 years, as was predicted, the new data suggest it could happen much sooner.

Historically, during extended solar minimum cycles which could range from 40,000 years to 700,000 years – each being its own cycle within a cycle, could be a contributing factor in historic global extinctions. I would ascertain and with using minimal consideration, you might have surmised a large part of my research is the study of cycles, hence, my company’s title Science Of Cycles.

Ѡ We have reached the halfway point for this project thanks to you. Now just short $500, perhaps there are five member supporters who could help out. But of course whatever each of you can contribute is welcome. btw, this multi-part series has taken notice by a few in our highly recognized scientific bodies.  CLICK HERE

An instinctive second and third question you might inquire would be: “What do we look for and what actually happens related to a magnetic shift?” I would suggest that perhaps within the next 20-30 years, there will be people alive today who will witness the process of magnetic north bouncing around the northern hemisphere above 60° latitude and swing between 30° east and 30° west longitudes. Furthermore, there will be some of you who are young enough to witness a more pronounced swing in both latitude and longitude as magnetic north will drop below the equator then bounce back within the next 50-60 years.

For a full polarity reversal to occur, the magnetic field needs to weaken by about 90% to a threshold level. This process can take thousands of years, and during this time, the lack of a protective magnetic shield around our planet allows more cosmic rays – high-energy particles mostly from within our galaxy Milky Way, but also from neighboring galaxies, will be able to penetrate our solar system and Earth. When this happens, these cosmic rays collide with more and more atoms in our atmosphere, such as nitrogen and oxygen. This produces variants of elements called cosmogenic isotopes, such as carbon-14 and beryllium-10, which fall to the surface. This provides a method of tracking reversals of the past, which helps assess future events.

Part – IX  The Mysterious South Atlantic Anomaly

Ways on How Particles Travel Nearly the Speed of Light

In the field of science, it is a common knowledge that nothing can ever surpass the speed of light, as what Albert Einstein theory of special relativity suggests. However, only small particles can get near the speed of light.

On May 29, 1919, after confirming Einstein’s work, NASA offered ways in accelerating particles in an amazing speed including electromagnetic field, magnetic explosion, and wave-particle interactions. These fundamental ways can be observed in the Sun. It’s a kind of real laboratory that allows scientists to even watch how nuclear reactions occur. Electromagnetic and magnetic fields have the ability to accelerate particles near the speed of light by electric charges. Examples, where this process can be done, are the particle accelerator at the Department of Energy Fermi National Accelerator Laboratory and Large Hadun Collides at the European Organization for Nuclear Research. The accelerators are able to pulse electromagnetic fields. Also, the particles are often crashed to find out what kind of energy they release.

Above the Sun interface is a tangle of magnetic fields. The magnetic field can send plums of solar material off the surface when it intersects and snaps. This kind of interaction also gives the particles its charge, according to Space.

“When tension between the crossed line becomes too great, the lines explosively snap and realign in a process known as “magnetic reconnection”,” explained NASA officials.

“The rapid change in a region’s magnetic field creates electric fields, which causes all the attendant charged particles to be flung away at high speeds,” they explained. The magnetic reconnection also happens to planets such as Jupiter and Saturn. The earth’s magnetic field can be measured using NASA’s Magnetospheric Multiscale Mission with the aid of four spacecrafts. Their results indicate that the magnetic field will help in understanding how particles in the universe accelerate. For instance, a magnetic connection can be observed with the solar wind specifically the constant stream of charged particles emitted by the Sun into the solar system.

Aside from the magnetic reconnection, other factors which are also capable of accelerating particles near the speed of light is the wave-particle interactions. The wave-particle interaction phenomena are driven when electromagnetic waves collide. “When electromagnetic waves collide, their fields can become compressed. Charged particles bouncing back and forth between the waves can gain energy similar to a ball bouncing between two merging walls,” stated NASA’s officials.

Another factor which can create an environment for a wave-particle interaction is the explosion of stars like supernovas. According to scientists, when a star explodes, it creates a blast wave shell of hot, dense compressed gas that can zoom away at a great speed from the stellar core. The process ejects high energy cosmic rays which are composed of particles at velocities close to the speed of light.

Part IV – Cycles Within Cycles, Within Cycles and ‘Science Of Cycles’

Here I am writing, then re-writing and then re-writing again. Partly because I find this exploratory research exhilarating, partly because it affirms the direction I chose to follow beginning mostly in 2012. And of course new information which was not available just a few years ago, and then formulating these strings of thought which has brought on a few spattering of “You’re kidding, no way, I thought so, and just plain wow”. Once again, as in my research of the Sun-Earth connection, but to a less noticeable degree, the right hand was not quite sure what the left hand was doing or aware of.

Those of you familiar with my first book “Solar Rain” will remember how I conveyed my unexpected surprise, when I realized how two of our greatest scientific bodies – NASA and NOAA, simply did not communicate with each other leaving me with no choice but to run back and forth as I pieced together NASA’s knowledge of space, and NOAA’s knowledge weather. When you put the two together you have “space-weather”.

A recent study published in the science journal ‘Nature’, indicates a direct connection between the acceleration of charged particles such as galactic cosmic rays and its effect on humans and animals. Charged particles come in many forms. From the Sun, they come in the form of solar flares, CMEs (coronal mass ejections), coronal holes, filament, and gamma ray burst. The more powerful and damaging particles are the galactic cosmic rays which comes from outside our solar system. These subatomic particles, made up of around ninety percent protons move through space at close to the speed of light. Magnetic fields deflect and distort the path of the particles, making it near impossible to determine their point of origin. Collision of stars, supernovae, even dark matter have all been named as a possible source.

Note: If you find this information of interest and useful, please consider supporting us with your donations. I am also looking for a sponsors that would help carrying this important research forward. Go to the click here button to support this work.                              CLICK HERE

As mentioned previously, during times of high solar activity (expansion), cosmic rays are better reflected from entering Earth’s atmosphere. However, during times of low solar activity (contraction), cosmic rays are far more abundant therefore have the potential to cause significant damage to our planet and all those living on it. Moreover, when you factor in the two current events happening concurrently, the scenario adds anecdotal averment of how far along this cycle we reside. First) A weakening magnetic field diminishing 10x faster than original estimates. Second) Evidence of an extended solar minimum which is going beyond one, two, three, or possibly more cycles allowing a profusion of galactic cosmic rays entering our atmosphere, with the higher energy particles penetrating deep into the Lithosphere, Mantle, and some research says right through the other side.

When scenario’s such as this occur, one must go beyond the better known short-term cycles comprised of averaging 11 yr. and 22 yr-cyl; while looking deeper into the less known medium ‘extended cycles’ such as the Milankovitch Cycle, the Laschamp Event, and the Maunder Minimum indicating that some cycles commingle while others supplant with periodicities ranging from Maunder’s 60-70 yr-cyl, to Laschamp’s 40,000 and 60,000 yr-cyl, to Milankovitch’s 23,000, 41,000, and 100,000 yr-cyl.

Then we have long-term cycles which can be traced back 550 million years.

*My eyes hurt, I have to stop here. I will pick it up tomorrow with “long-term cycles”

 

Part II – New Findings Show a Closer Connection Between Galactic Cosmic Rays, Our Solar System, and Milky Way

Just as the Earth and other planets rotate around our Sun, our solar system has a rotation trajectory around our galaxy Milky Way. And I must say…before I leave this plane of existence, I feel confident future research will show our galaxy, along with neighboring galaxies, will also have a periodicity rotation with cyclical parameters…rotating around what is yet to be discovered.

The Earth is regularly exposed to cosmic rays as it oscillates upward through the galactic disc. Every 60 million years or so, astronomers believe that our Sun and planets cycle northward in the galactic plane. Just as the Earth has her magnetic field, Milky Way has its own. Without the galactic plane’s magnetic field shielding our solar system, we would be at even higher risk of radiation exposure. It is hypnotized that the closer our solar system travels to the galactic center, we note a correlation between this cyclical motion and partial to mass extinctions happening with a fair amount of regularity on Earth over the past 500 million years.

Some scientists have surmised we are in the midst of a sixth mass extinction of plants and animals. An assemblage of researchers have noted the cycle we are currently experiencing may be a high ratio of species die-offs since. Although extinction is a natural phenomenon, it occurs at a natural “background” rate of about one to five species per year. Scientists estimate we’re now losing species at 1,000 to 10,000 times the background rate. However, to keep things in perspective – researchers currently know of about 1.2 million species to be recorded by science. What’s left to be discovered however is very interesting. The number of species that scientists think are left to be discovered is around 8.7 million. Still, new discoveries can change a scenario, and so can the numbers.

I have re-written this article and ones coming 3 or 4 times because of its importance. Some of you might remember an importance decision I made concerning the direction of my research. I had such a strong pull to go beyond the study of our Sun-Earth connection and peeking around the corner to see what’s next. What I hope to show you is that I am finding a very similar pattern of cause and effect, symbiotic relationship between each level of co-existence. I hope you agree and perhaps catch a flavor of my enthusiastic venturous demeanor. If so, pledge your donation to match renewed devotion to this work. If you happen to know Bill Gates, or his neighbor, give him a call.

Coming Next: Part III – First Will Come Reversal Excursions Then the Flip

New Era of Astronomy Uncovers Clues about Particles and Waves

For most in the history of astronomy, scientists primarily studied signals transmitted by one messenger, electromagnetic radiation. These waves, which move through space and time, are described by their wavelengths or the amount of energy found in their particles.

Radio waves have photons with the lowest amount of energy and the longest wavelengths, followed by infrared and optical light at intermediate energies and wavelengths. X-rays and gamma-rays have the shortest wavelengths and the highest energy.

Multimessenger astronomy is a natural evolution of astronomy. Scientists need more data to put together a complete picture of the objects they study and match the theories they develop with their observations.

Here are the main messengers now being studied:

Cosmic rays: charged particles and nuclei travelling near the speed of light.
Neutrinos: uncharged particles that see most of the universe as transparent.
Gravitational waves: wrinkles in the very fabric of space and time.

While some fields in astronomy have explored these messengers for years, astronomers have only recently observed events from well beyond the Milky Way with more than one messenger at the same time. In just a few months, the number of sources where astronomers can piece together the signals from different messengers doubled.

Astronomers have combined different wavelengths of photons to piece together some of the mysteries of the universe. For example, the combination of radio and optical data played a major role in determining that the Milky Way is a spiral galaxy in 1951.

The cultures of astronomers and particle physicists represent different approaches to science. In multimessenger astronomy, these cultures collide.

Astronomy is an observational field and not an experiment. We study astronomical objects that change over time (time-domain astronomy), which means we often have only one chance to observe a transient astronomical event. Time-domain is the analysis of mathematical functions, physical signals or time series of economic or environmental data, with respect to time.

Until recently, most time-domain astronomers worked in small teams, on many projects at once. We use resources like The Astronomer’s Telegram or the Gamma-ray Coordination Network to rapidly communicate results, even before submitting scientific papers.

Particle physicists have led the way in creating large international collaborations to tackle their hardest problems, including the Large Hadron Collider, the IceCube Neutrino Observatory and the Laser Interferometer Gravitational-Wave Observatory (LIGO). Corralling hundreds to thousands of researchers to work towards common goals requires comprehensive identification of roles, strict communication guidelines and many teleconferences.

The need to respond to rapid changes in a multimessenger source and the huge effort to capture multimessenger signals means astronomy and particle physics must merge towards one another to elicit the best of both cultures.

The benefits of multimessenger astronomy

While multimessenger astronomy is an evolution of what astronomers and particle physicists have done for decades, the combined results are intriguing.

The detection of gravitational waves from merging neutron stars confirmed that these collisions made a large fraction of the gold and platinum on Earth (and throughout the universe). It also showed how these collisions give rise to (at least some) short gamma-ray bursts—the origin of these explosive events has been a huge open question in astronomy.

The first association of a neutrino with a single astronomical source provided a glimpse into how the universe makes its most energetic particles. Multimessenger astronomy is revealing details about some of the most extreme conditions in our universe.

The multimessenger perspective is already yielding more than the sum of its parts —and we can expect to see more surprising discoveries in the future. Elite teams are already contributing to the growth of this young field, and multimessenger astronomy promises to play a major role in our next decade of astronomical research across the world.

Part II – Lunar and Solar Eclipse and Related Earth Changing Events

First, thank you for your well wishes, and a pleasant surprise from some who responded to my addressing the love I have for my work and in ways reflects that of my marriage and family.

“I think you know I love what I do, but what’s really rewarding is when it loves me back. I attribute my thoughts to that of a healthy marriage. To give a hundred percent is a good thing, but many of us who are married, add a bit more if you have kids, realize that sometimes a hundred percent is not enough. This is to say; even on those times when you are absolutely right on this, that, or the other, it’s better to let your partner be right too.”

This was written without conscience, which ironically, defines its literal meaning. This gives me hope that just maybe my inside matches my outside. So it really touched me to see your response, and I’m guessing it must have touched a part of you, or at least caused you to pause if only for a second or minute. If those of you who commented bringing your thoughts to my attention, I would not have noticed any such possible deeper understanding. Thanks

But to maintain full disclosure…I do not always measure up to this worthy principle mentioned above. Nonetheless, I do hold it as an ideal, trying at most turns to maintain it as my default. Oh, and btw, the piggy bank is still pretty empty. Go to the following link to help keep us alive: CLICK HERE

__________________

Okay, now let’s get to the science of things:

You will see a list of significant earthquakes following below. But first, let me highlight the ’cause’ of events as it relates to both Lunar and Solar eclipse. My research points to a 14 day prior and 14 day post window lunar or solar events.

As it relates to a lunar eclipse, the stimulant which precipitates events such as earthquakes and volcanoes is the ‘fluid displacement’ initiated by gravitational tugs causing unusual high tides placing additional weight (pressure) on tectonic plates causing slippage.

The term fluid displacement is not just related to oceans; it includes fluids such as magma, oil, liquefied sediment, and even gas processes. It is the expansion [or contraction] of fluids on tectonic plates which cause the increase of larger earthquakes or volcanic eruptions.

As it relates to solar eclipse, it is the sudden temperature fluctuation which can cause a chain reaction. By presenting a sudden and rapid shift in both the jet stream and ocean currents, this in-turn can cause a destabilizing of set seasonal patterns. Although temperature flux may be subtle, if tectonics are at their tipping point, it would not take much to set them off. Additionally, the rapid temperature change can cause an expansion and contraction of Earth’s lithosphere, even if ever so slight, can set off a chain reaction of tectonic slippage resulting in significant earthquakes and volcanic eruptions.

Remember, the majority of volcanoes are submarine (ocean bottom); hence the rapid shift in ocean temperatures is also prone to set off a rippling effect which is often unpredictable due to the spider webbing tentacles which connect a system of mantle plumes and volcanoes.

Significant Earthquakes Between JULY 15TH – AUGUST 19TH

2018-08-19  T15:16:34.100Z  5.9  8km ESE of Sembalunbumbung, Indonesia

2018-08-19  T14:56:28.090Z  6.9  2km S of Belanting, Indonesia

2018-08-19  T04:28:59.760Z  6.8  282km ESE of Lambasa, Fiji

2018-08-19  T04:10:21.570Z  6.3  6km NE of Sembalunlawang, Indonesia

2018-08-19  T00:23:02.740Z  6.3  259km NNE of Ndoi Island, Fiji

2018-08-19  T00:19:37.970Z  8.2  280km NNE of Ndoi Island, Fiji

2018-08-17  T23:22:24.900Z  6.1  14km N of Golfito, Costa Rica

2018-08-17  T15:35:02.070Z  6.5  109km NNW of Kampungbajo, Indonesia

2018-08-16  T18:22:53.350Z  6.3  250km SE of Iwo Jima, Japan

2018-08-15  T21:56:54.780Z  6.6  50km S of Tanaga Volcano, Alaska

2018-08-14  T03:29:53.440Z  6.1  126km NE of Bristol Island, South Sandwich Islands

2018-08-12  T21:15:01.841Z  6.1  65km SSW of Kaktovik, Alaska

2018-08-12  T14:58:54.286Z  6.3  90km SW of Kaktovik, Alaska

2018-08-10  T18:12:06.880Z  5.9  267km SSW of Severo-Kuril’sk, Russia

2018-08-09  T05:25:31.910Z  5.9  3km SE of Todo, Indonesia

2018-08-05  T11:46:38.190Z  6.9  0km SW of Loloan, Indonesia

2018-07-28  T22:47:38.740Z  6.4  5km WNW of Obelobel, Indonesia

2018-07-28  T17:07:23.370Z 6.0    149km N of Palue, Indonesia

2018-07-23  T10:36:00.330Z 5.9  Central Mid-Atlantic Ridge

2018-07-21  T20:56:19.940Z  5.9  Southeast Indian Ridge

2018-07-19  T18:30:32.710Z  6.0  91km W of Kandrian, Papua New Guinea

2018-07-17  T07:02:53.020Z  6.0  116km SE of Lata, Solomon Islands

2018-07-15  T13:09:16.470Z  6.0  159km SSE of Sayhut, Yemen

2018-07-15  T01:57:19.410Z  6.0  137km SSE of Sayhut, Yemen

Part III – identifies the latest in cosmic ray discoveries and its effect on our galaxy-solar system-Sun-Earth. There will be many surprises.

Science Of Cycles News and Research Support