(NEW) Cosmic Ray Radiation Increasing in Earth’s Atmosphere to Its Core

This article as well as one I published on October 22nd titled: Cosmic Ray Particles That Tunnel Through Earth , tell the story of how legitimate research makes its way through the enormous pressure of peer review, ridicule, occasional self-questioning – and perhaps most of all, the 50-50 possibility that I will not get credit for my presented hypotheses first published in 2012.

This article as well as one I published on October 22nd titled: Cosmic Ray Particles That Tunnel Through Earth , tell the story of how legitimate research makes its way through the enormous pressure of peer review, ridicule, occasional self-questioning – and perhaps most of all, the 50-50 possibility that I will not get credit for my presented hypotheses first published in 2012.

My last point presented does indeed reflect ego, can’t sidestep this certitude, however they do tell me there is such a thing as ‘healthy ego’; so I hope my analogy reflects such. The facts have been provided in published papers and in two of my books “Solar Rain; The Earth Changes Have Begun” (2005) and “Global Warming; A Convenient Disguise” (2007).

You might remember my mentioning the term “space weather” – and perhaps more importantly – as it is defined today, began in the late 1990’s when both Mitch Battros and Tony Phillips (NASA contractor) launched our websites in 1997. My original site was www.earthchangestv.com and his is www.spaceweather.com. The Wayback Machine records indicate we both launched our site at the same time….December 1998. However, I know we both set up in 1997 and it may be that the Wayback Machine did not start recording until 1998.

Before my research and hypothesis was published, scientific disciplines spoke in terms of ‘climate’ which is measured in decades, centuries, and millennium. My studies highlighted the fact that symbiotic casual interaction perpetrated by various forms of charged particles. The actions and reactions of these storms would occur within minutes, hours, and days. This form of interaction is known as “weather.” Hence, space weather was born…..

The research below addresses the region of the United States; however, similar findings have been noted around the world except for one region. It is an area known as the South Atlantic Anomaly.  A region that worries scientists at the moment is the South Atlantic Anomaly – a vast area stretching from Chile to Zimbabwe.

Here, the magnetic field is so weak that it is dangerous for the Earth’s satellites to pass through it because the high cosmic radiation in this area can destroy the electronics. Now a team of American researchers has found a possible reason for this anomaly, which, among other things, can pave the way for a better understanding of the weakening and reversal of magnetic poles.

High-altitude balloon flights conducted show that atmospheric radiation is intensifying from coast to coast over the USA, which would appear counter-intuitive as it directly corresponds with a decrease in solar activity during a cycles solar minimum.

Since 2015, we have been monitoring X-rays, gamma-rays and neutrons in the stratosphere, mainly over central California, but also in a dozen other states (NV, OR, WA, ID, WY, KS, NE, MO, IL, ME, NH, VT). Everywhere we have been there is an upward trend in radiation–ranging from +20% in central California to +33% in Maine. The latest points circled in red, were gathered during a ballooning campaign in August-October 2018.

How does Solar Minimum boost radiation? The answer lies in the yin-yang relationship between cosmic rays and solar activity. Cosmic rays are the subatomic debris of exploding stars and other violent events. Normally, the Sun’s magnetic field and solar wind hold cosmic rays at bay, however, during Solar Minimum these defenses weaken allowing a flood of galactic cosmic rays into the solar system.

Cosmic rays crashing into our plane’s atmosphere produce a spray of secondary particles and photons. That secondary spray is what we measure. Each balloon flight, which typically reaches an altitude greater than 100,00o feet, gives us a complete profile of radiation from ground level to the stratosphere. Our sensors sample energies between 10 keV and 20 MeV, spanning the range of medical X-ray machines, airport security devices, and “killer electrons” in Earth’s radiation belts.

Cosmic radiation at aviation altitudes is typically 50 times that of natural sources at sea level. Pilots are classified as occupational radiation workers by the International Commission on Radiological Protection (ICRP) and, according to a recent study from researchers at the Harvard School of Public Health, flight attendants face an elevated risk of cancer compared to members of the general population.

They listed cosmic rays as one of several risk factors. Weather and climate may also be affected, with some research linking cosmic rays to to the formation of clouds and lightning. Finally, there are studies (one recently published in Nature) asserting that heart rate variability and cardiac arrhythmias are affected by cosmic rays in some populations. If true, it means the effects reach all the way to the ground.

 

JUST IN: Cosmic Ray Particles That Tunnel Through Earth

A fountain of high-energy particles that resembles an upside-down cosmic-ray shower is detected for the second time by the Antarctic Impulsive Transient Antenna (ANITA).

ANITA detected an unexpected signal – radio waves coming from the ice with an inverted phase. The detection suggest the signals came from upward-moving particles that tunneled through Earth before erupting from the ice.

In a paper published in the journal American Geophysical Union (AGU) Space Weather, associate professor Nathan Schwadron of the UNH Institute for the Study of Earth, Oceans, and Space (EOS) and the department of physics says that due to this solar cycles vast drop in solar activity, a stream of cosmic ray particles are flooding Earth’s atmosphere – and further driving in and through Earth’s core.

In addition to a lower solar minimum cycle, Earth’s magnetic field continues to weaken which also allows a greater number of cosmic particles to enter our atmosphere. Some cosmic charged particles known as Ultra High Energy Cosmic Rays (UHECR) are millions of times greater in kinetic energy than cosmic rays. These powerful particles plow right through Earth’s upper and lower mantle, into the outer and inner core.

My research suggest the radiation of these particles has a significant influence on Earth’s core by increasing temperatures. As a natural result, Earth compensates to maintain its ambient temperature. This is done by sweating. Just as us humans sweat through our pores to manage an overheated body, the Earth sweats by releasing magma through its pores known as ‘mantle plumes’.

More Coming Later…

 

JUST IN: Newly Detected Gamma-Rays From Milky Way

The first-ever detection of highly energetic radiation from a microquasar has astrophysicists scrambling for new theories to explain the extreme particle acceleration. The team’s observations led by Hui Li, Los Alamos National Laboratory’s Theoretical Division says; “”What’s amazing about this discovery is that all current particle acceleration theories have difficulties explaining the observations.”

A microquasar is a black hole that gobbles up debris from a nearby companion star and blasts out powerful jets of material. The team’s observations, described in the Oct. 4 issue of the journal Nature, strongly suggest that particle collisions at the ends of the microquasar’s jets produced the powerful gamma rays. Scientists think that studying messages from this microquasar, dubbed SS 433, may offer a glimpse into more extreme events happening at the centers of distant galaxies.

The team gathered data from the High-Altitude Water Cherenkov Gamma-Ray Observatory (HAWC), which is a mountain-top detector in Mexico that observes gamma ray emission from supernova remnants, rotating dense stars called pulsars, and quasars. Los Alamos, funded by Department of Energy Office of High-Energy Physics, helped build HAWC, which was completed in 2015.

Based on their analysis, the researchers concluded that electrons in the jets attain energies that are about 1,000 times higher than can be achieved using earth-bound particle accelerators, such as the Large Hadron Collider. The jet electrons collide with the low-energy microwave background radiation that permeates space, resulting in gamma ray emission. This is a newly observed mechanism for getting high-energy gamma rays out of this kind of system and is different from what scientists have observed when the jets are aimed at Earth.

___________________

Alexa’s and Sophia’s Kids Heart Challenge Fundraiser (American Heart Association)

At my school, I’m learning how I can help make a difference by raising lifesaving donations to help kids with heart disease.  I’m also learning about my own heart, and how to keep it healthy. And I’m getting active!

I’m excited about raising money for other kids – kids with hearts that don’t exactly work right and to help fund new medicines and treatments to be discovered.                     Please help me make a difference!  Thank you!

Alexa’s Link: http://bit.ly/2y1xSV5

Sophia’s Link: http://bit.ly/2PgnhfK

 

Radio Observations Confirm Superfast Jet of Material

Precise measurement using a continent-wide collection of National Science Foundation (NSF) radio telescopes has revealed that a narrow jet of particles moving at nearly the speed of light broke out into interstellar space after a pair of neutron stars merged in a galaxy 130 million light-years from Earth. The merger, which occurred in August of 2017, sent gravitational waves rippling through space. It was the first event ever to be detected both by gravitational waves and electromagnetic waves, including gamma rays, X-rays, visible light, and radio waves.

The aftermath of the merger, called GW170817, was observed by orbiting and ground-based telescopes around the world. Scientists watched as the characteristics of the received waves changed with time, and used the changes as clues to reveal the nature of the phenomena that followed the merger.

One question that stood out, even months after the merger, was whether or not the event had produced a narrow, fast-moving jet of material that made its way into interstellar space. That was important, because such jets are required to produce the type of gamma ray bursts that theorists had said should be caused by the merger of neutron-star pairs.

The answer came when astronomers used a combination of the NSF’s Very Long Baseline Array (VLBA), the Karl G. Jansky Very Large Array (VLA), and the Robert C. Byrd Green Bank Telescope (GBT) and discovered that a region of radio emission from the merger had moved, and the motion was so fast that only a jet could explain its speed.

“We measured an apparent motion that is four times faster than light. That illusion, called superluminal motion, results when the jet is pointed nearly toward Earth and the material in the jet is moving close to the speed of light,” said Kunal Mooley, of the National Radio Astronomy Observatory (NRAO) and Caltech.

The astronomers observed the object 75 days after the merger, then again 230 days after.

“Based on our analysis, this jet most likely is very narrow, at most 5 degrees wide, and was pointed only 20 degrees away from the Earth’s direction,” said Adam Deller, of the Swinburne University of Technology and formerly of the NRAO. “But to match our observations, the material in the jet also has to be blasting outwards at over 97 percent of the speed of light.” he added.

The scenario that emerged is that the initial merger of the two superdense neutron stars caused an explosion that propelled a spherical shell of debris outward. The neutron stars collapsed into a black hole whose powerful gravity began pulling material toward it. That material formed a rapidly-spinning disk that generated a pair of jets moving outward from its poles.

As the event unfolded, the question became whether the jets would break out of the shell of debris from the original explosion. Data from observations indicated that a jet had interacted with the debris, forming a broad “cocoon” of material expanding outward. Such a cocoon would expand more slowly than a jet.

“Our interpretation is that the cocoon dominated the radio emission until about 60 days after the merger, and at later times the emission was jet dominated,” said Ore Gottlieb, of the Tel Aviv University, a leading theorist on the study.

“We were lucky to be able to observe this event, because if the jet had been pointed much farther away from Earth, the radio emission would have been too faint for us to detect,” said Gregg Hallinan of Caltech.

The detection of a fast-moving jet in GW170817 greatly strengthens the connection between neutron star mergers and short-duration gamma-ray bursts, the scientists said. They added that the jets need to be pointed relatively closely toward the Earth for the gamma ray burst to be detected.

“Our study demonstrates that combining observations from the VLBA, the VLA and the GBT is a powerful means of studying the jets and physics associated with gravitational wave events,” Mooley said.

“The merger event was important for a number of reasons, and it continues to surprise astronomers with more information,” said Joe Pesce, NSF Program Director for NRAO. “Jets are enigmatic phenomena seen in a number of environments, and now these exquisite observations in the radio part of the electromagnetic spectrum are providing fascinating insight into them, helping us understand how they work.”

JUST IN: Another ‘Bingo’ for Science Of Cycles Research, New Study Shows Rhythmic Oscillation of Charged Particles

In an article I published on August 18th which was Part I of a three part series, I made the following statement. “As we gain increased knowledge of the when-where-how of various charged particles, which encompasses such things as Black Holes, Supernovas, Gamma Ray Blasts, and Coronal Mass Ejections – we develop a cognizance lending itself to a measure of predictability. As a naturally directed outcome of evolving research – it is the “Science Of Cycles” which takes us to the next level of aptitude which could very well bring us to the cusp of an extraterrestrial neighborhood.”   Article Here

Now, in a new discovery just published reported in a paper published at Cornell University arXiv Library, the ‘science of cycles’ has made a significant leap. Astronomers have detected transient ‘rhythmic oscillations’ in the gamma-ray emission from the blazar Markarian 501. In general, blazars are perceived by astronomers as high-energy engines serving as natural laboratories to study particle acceleration, relativistic plasma processes, magnetic field dynamics and black hole physics. Rhythmic; movement or procedure with uniform or pattern, and Oscillation; source that repeatedly and regularly fluctuates.

A group of astronomers led by Gopal Bhatta of the Astronomical Observatory of the Jagiellonian University in Kraków, Poland, has analyzed the observational data of Mrk 501 collected by the Large Area Telescope (LAT) of NASA’s Fermi Gamma-ray Space Telescope, between August 2008 and June 2018. The study resulted in the detection of rhythmic oscillations in the blazar’s gamma-ray emission.

**Science Of Cycles keeps you tuned-in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living. CLICK HERE

Blazars, are classified as active galaxies that host active galactic nuclei (AGN). Their characteristic features are relativistic jets pointed almost exactly toward the Earth. In general, blazars are perceived by astronomers as high-energy engines serving as natural laboratories to study particle acceleration, relativistic plasma processes, magnetic field dynamics and black hole physics.

Located some 456 million light-years away, Markarian 501 (or Mrk 501 for short) is a blazar with a spectrum extending to the highest energy gamma rays. It is one of the nearest blazars that shines bright in the X-ray and one of the earliest extragalactic sources detected in the TeV band. According to the study, astronomers found a strong signal of quasi-periodic oscillation (QPO) with a periodicity of around 332 days. They added that the gamma-ray flux modulation in this blazar gradually decayed in strength during the recent years.

The study presents several hypotheses about what could be the driving force behind such rhythmic oscillations in Mrk 501. The research team suggest various scenarios, including supermassive binary black holes, jet precession and accretion disk precessing under gravitational torque. Additionally, the researchers concluded that further analysis of Mrk 501 and discussion on the topic are needed in order to definitely determine the most plausible theory explaining the origin of the oscillations in this blazar.

__________________

Science Of Cycles Research Fund

Keep Us Going: Science Of Cycles keeps you tuned in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

 

Part III (con’t) Cosmic Rays and There Effect to Our Solar System and Earth

The origin of ultrahigh-energy cosmic rays (UHECRs) is a half-century-old enigma. The mystery has been deepened by an intriguing coincidence: over ten orders of magnitude in energy, the energy generation rates of UHECRs, PeV neutrinos and isotropic sub-TeV gamma-rays are comparable, which hints at a grand unified picture.

Here we report that powerful black hole jets in aggregates of galaxies can supply the common origin for all of these phenomena. Once accelerated by a jet, low-energy cosmic rays confined in the radio lobe are adiabatically cooled; higher-energy cosmic rays leaving the source interact with the magnetized cluster environment and produce neutrinos and gamma-rays.

The highest-energy particles escape from the host cluster and contribute to the observed cosmic rays above 100 PeV. The model is consistent with the spectrum, composition and isotropy of the observed UHECRs, and also explains the IceCube neutrinos and the non-blazar component of the Fermi gamma-ray background, assuming a reasonable energy output from black hole jets in clusters.

__________________

Science Of Cycles Research Fund

Science Of Cycles keeps you tuned in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

 

Part III – Cosmic Rays and There Effect to Our Solar System and Earth

First, I wish to address the study of the most powerful kinetically energized cosmic ray particle what has now become known as the ‘OMG Particle’.

“OMG” was the nickname given to the first example of what are now known as ultra-high-energy cosmic rays, detected in 1991 by the University of Utah’s Fly’s Eye cosmic ray detector. That single proton slammed into our atmosphere going roughly 99.99999999999999999999951 percent the speed of light. And no, all those nines aren’t just for dramatic effect to make the number look impressive – it really was that fast. This particle had the same amount of kinetic energy as a decently thrown baseball … compressed down into an object the size of a proton.

That means this particle had over 10 million times more energy than what our most powerful particle collider, the LHC, can produce. Due to relativistic time dilation, at that speed, the OMG particle could travel to our nearest neighbor star, Proxima Centauri, in 0.43 milliseconds of the particle’s own time. It could continue on to our galactic core by the time you’ve finished reading this sentence (from its own perspective).

To accelerate a charged particle to insane velocities, you need two key ingredients: a lot of energy and a magnetic field. The magnetic field does the work of transferring to the particle whatever energies are in your event (say, the explosive kinetic energy of a supernova blast or the swirling gravitational pull as matter falls toward a black hole).

The true origins of these ultra-high-energy “OMG” particles are tough to pin down, and despite almost 30 years of detection history, we don’t have a lot of firm answers. Which is fine – it’s good to have at least some mysteries left in the universe. Astrophysicists could use some job security, too.

__________________

Science Of Cycles Research Fund