Scientists Develop A New Way To Remotely Measure Earth’s Magnetic Field

Researchers in Canada, the United States and Europe have developed a new way to remotely measure Earth’s magnetic field—by zapping a layer of sodium atoms floating 100 kilometres above the planet with lasers on the ground.

The technique, documented this week in Nature Communications, fills a gap between measurements made at the Earth’s surface and at much higher altitude by orbiting satellites.

“The magnetic field at this altitude in the atmosphere is strongly affected by physical processes such as solar storms and electric currents in the ionosphere,” says Paul Hickson an astrophysicist at the University of British Columbia (UBC) and author on the paper.

“Our technique not only measures magnetic field strength at an altitude that has traditionally been hidden, it has the side benefit of providing new information on space weather and atomic processes occurring in the region.”

Sodium atoms are continually deposited in the mesosphere by meteors that vaporize as they enter Earth’s atmosphere. Researchers at the European Southern Observatory (ESO), the University of Mainz and UBC used a ground-based laser to excite the layer of sodium atoms and monitor the light they emit in response.

“The excited sodium atoms wobble like spinning tops in the presence of a magnetic field,” explains Hickson. “We sense this as a periodic fluctuation in the light we’re monitoring, and can use that to determine the magnetic field strength.”

Hickson and UBC Ph.D. student Joschua Hellemeier developed the photon counting instrument used to measure the light coming back from the excited sodium atoms, and participated in observations conducted at astronomical observatories in La Palma.

The ESO team, led by Bonaccini Calia, pioneered world-leading laser technology for astronomical adaptive optics used in the experiment. Project lead Felipe Pedreros and Dmitry Budker (Johannes Gutenberg University), Simon Rochester and Ronald Holzloehner (ESO), experts in laser-atom interactions, led the theoretical interpretation and modeling for the study.

A Wrench In Earth’s Engine

Researchers at CU Boulder report that they may have solved a geophysical mystery, pinning down the likely cause of a phenomenon that resembles a wrench in the engine of the planet.

In a study published today in Nature Geoscience, the team explored the physics of “stagnant slabs.” These geophysical oddities form when huge chunks of Earth’s oceanic plates are forced deep underground at the edges of certain continental plates. The chunks sink down into the planet’s interior for hundreds of miles until they suddenly—and for reasons scientists can’t explain—stop like a stalled car.

CU Boulder’s Wei Mao and Shijie Zhong, however, may have found the reason for that halt. Using computer simulations, the researchers examined a series of stagnant slabs in the Pacific Ocean near Japan and the Philippines. They discovered that these cold rocks seem to be sliding on a thin layer of weak material lying at the boundary of the planet’s upper and lower mantle—roughly 660 kilometers, or 410 miles, below the surface.

And the stoppage is likely temporary: “Although we see these slabs stagnate, they are a fairly recent phenomena, probably happening in the last 20 million years,” said Zhong, a co-author of the new study and a professor in CU Boulder’s Department of Physics.

The findings matter for tectonics and volcanism on the Earth’s surface. Zhong explained that the planet’s mantle, which lies above the core, generates vast amounts of heat. To cool the globe down, hotter rocks rise up through the mantle and colder rocks sink.

“You can think of this mantle convection as a big engine that drives all of what we see on Earth’s surface: earthquakes, mountain building, plate tectonics, volcanos and even Earth’s magnetic field,” Zhong said.

The existence of stagnant slabs, which geophysicists first located about a decade ago, however, complicates that metaphor, suggesting that Earth’s engine may grind to a halt in some areas. That, in turn, may change how scientists think diverse features, such as East Asia’s roiling volcanos, form over geologic time.

Scientists have mostly located such slabs in the western Pacific Ocean, specifically off the east coast of Japan and deep below the Mariana Trench. They occur at the sites of subduction zones, or areas where oceanic plates at the surface of the planet plunge hundreds of miles below ground.

Slabs seen at similar sites near North and South America behave in ways that geophysicists might expect: They dive through Earth’s upper mantle and into the lower mantle where they heat up near the core.

But around Asia, “they simply don’t go down,” Zhong said. Instead, the slabs spread out horizontally near the boundary between the upper and lower mantle, a point at which heat and pressure inside Earth cause minerals to change from one phase to another.

To find out why slabs go stagnant, Zhong and Mao, a graduate student in physics, developed realistic simulations of how energy and rock cycle around the entire planet.

They found that the only way they could explain the behavior of the stagnant slabs was if a thin layer of less-viscous rock was wedged in between the two halves of the mantle. While no one has directly observed such a layer, researchers have predicted that it exists by studying the effects of heat and pressure on rock.

If it does, such a layer would act like a greasy puddle in the middle of the planet. “If you introduce a weak layer at that depth, somehow the reduced viscosity helps lubricate the region,” Zhong said. “The slabs get deflected and can keep going for a long distance horizontally.”

Stagnant slabs seem to occur off the coast of Asia, but not the Americas, because the movement of the continents above gives those chunks of rock more room to slide. Zhong, however, said that he doesn’t think the slabs will stay stuck. With enough time, he suspects that they will break through the slick part of the mantle and continue their plunge toward the planet’s core.

The planet, in other words, would still behave like an engine—just with a few sticky spots. “New research suggests that the story may be more complicated than we previously thought,” Zhong said.

BREAKING NEWS: Unusual Features Spotted Near Earth’s Core

Nearly 1,800 miles below the Earth’s surface, there are large odd structures lurking at the base of the mantle, sitting just above the core. The mantle is a thick layer of hot, mostly plastic rock that surrounds the core; atop the mantle is the thin shell of the Earth’s crust. On geologic time scales, the mantle behaves like a viscous liquid, with solid elements sinking and rising through its depths.

The aforementioned odd structures, known as ultra-low velocity zones (ULVZs), were first discovered in 1995 by Caltech’s Don Helmberger. ULVZs can be studied by measuring how they alter the seismic waves that pass through them. But observing is not necessarily understanding. Indeed, no one is really sure what these structures are.

ULVZs are so-named because they significantly slow down the speeds of seismic waves; for example, they slow down shear waves (oscillating seismic waves capable of moving through solid bodies) by as much as 30 percent. ULVZs are several miles thick and can be hundreds of miles across. Several are scattered near the Earth’s core roughly beneath the Pacific Rim. Others are clustered underneath North America, Europe, and Africa.

“ULVZs exist so deep in the inner Earth that they are impossible to study directly, which poses a significant challenge when trying to determine what exactly they are,” says Helmberger, Smits Family Professor of Geophysics, Emeritus.

Earth scientists at Caltech now say they know not just what ULVZs are made of, but where they come from. Using experimental methods at high pressures, the researchers, led by Professor of Mineral Physics Jennifer Jackson, have found that ULVZs consist of chunks of a magnesium/iron oxide mineral called magnesiowüstite that could have precipitated out of a magma ocean that is thought to have existed at the base of the mantle millions of years ago.

The other leading theory for ULVZs formation had suggested that they consist of melted material, some of it possibly leaking up from the core.

Jackson and her colleagues, who reported on their work in a recent paper in the Journal of Geophysical Research: Solid Earth, found evidence supporting the magnesiowüstite theory by studying the mineral’s elastic (or seismic) anisotropy; elastic anisotropy is a variation in the speed at which seismic waves pass through a mineral depending on their direction of travel.

One particularly unusual characteristic of the region where ULVZs exist—the core-mantle boundary (CMB)—is that it is highly heterogenous (nonuniform in character) as well as anisotropic. As a result, the speed at which seismic waves travel through the CMB varies based not only on the region that the waves are passing through but on the direction in which those waves are moving. The propagation direction, in fact, can alter the speed of the waves by a factor of three.

“Previously, scientists explained the anisotropy as the result of seismic waves passing through a dense silicate material. What we’re suggesting is that in some regions, it is largely due to the alignment of magnesiowüstite within ULVZs,” says Jackson.

At the pressures and temperatures experienced at the Earth’s surface, magnesiowüstite exhibits little anisotropy. However, Jackson and her team found that the mineral becomes strongly anisotropic when subjected to pressures comparable to those found in the lower mantle.

Jackson and her colleagues discovered this by placing a single crystal of magnesiowüstite in a diamond anvil cell, which is essentially a tiny chamber located between two diamonds. When the rigid diamonds are compressed against one another, the pressure inside the chamber rises. Jackson and her colleagues then bombarded the sample with x-rays. The interaction of the x-rays with the sample acts as a proxy for how seismic waves will travel through the material. At a pressure of 40 gigapascals—equivalent to the pressure at the lower mantle—magnesiowüstite was significantly more anisotropic than seismic observations of ULVZs.

In order to create objects as large and strongly anisotropic as ULVZs, only a small amount of magnesiowüstite crystals need to be aligned in one specific direction, probably due to the application of pressure from a strong outside force. This could be explained by a subducting slab of the Earth’s crust pushing its way to the CMB, Jackson says. (Subduction occurs at certain boundaries between Earth’s tectonic plates, where one plate dives below another, triggering volcanism and Earthquakes.)

“Scientists are still in the process of discovering what happens to the crust when it’s subducted into the mantle,” Jackson says. “One possibility, which our research now seems to support, is that these slabs push all the way down to the core-mantle boundary and help to shape ULVZs.”

Next, Jackson plans to explore the interaction of subducting slabs, ULVZs, and their seismic signatures. Interpreting these features will help place constraints on processes that happened early in Earth’s history, she says.

The study is titled “Strongly Anisotropic Magnesiowüstite in Earth’s Lower Mantle.”

JUST IN: Watch for Increased Geomagnetic Flux Approaching Autumn Equinox

Starting this week Earth’s magnetic field is vulnerable to enhanced charged particles making its way through Earth’s magnetic field as we approach Autumn Equinox. Since our seasons are caused by the tilt of Earth’s axis relative to its orbital plane, the equinox roughly marks the transition from longer periods of daylight to shorter ones or vice versa.

During this time an occurrence known as the Russell-McPherron effect; is a hypothesis identifying geomagnetic activity is more intense around fall equinox when the direction of the interplanetary magnetic field (IMF) is away the Sun.

__________________

Science Of Cycles keeps you tuned-in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

JUST IN: Historic Space Weather Could Clarify What’s Next

“Historic space weather may help us understand what’s coming next, according to new research by the University of Warwick.”

Actually, those of you who have followed Earth Changes TV, Earth Changes Media, and Science Of Cycles over the years, know what is mentioned in this ‘new’ research – is anything but ‘new’. Having said this, I am grateful that so many scientists around the world have come to affirm what happens in and around our solar system, does in fact have an influence on our planet Earth and those who reside on it.

Although this research addresses space weather as it relates to the Sun-Earth connection, I can assure you space weather will encompass our solar systems connection to our galaxy Milky Way within the next few years… (wipe smirk off face) however, SOC’s published research is already there – and has been since 2012 as identified in my 2012 updated equation. (see below)

This symbiotic causation is driven by charged particles. It has now become known as “space weather.” My research spans back to 1997, when I began to interview some of the highest esteemed scientists from agencies such as NASA, NOAA, ESA, US Naval Observatory, Royal Observatory – along with several professors from highly qualified universities such as Stanford, MIT, Johns Hopkins, Caltec, and UCLA.

Perhaps the most important word in this ‘new’ research is the word “historic”. This is to say scientists have gathered enough data to observe cycles and patterns. In doing so, the day is inching its way closer to better predict and prepare for mini and mega cycle events. And of course…another way to put it is the “ScienceOfCycles.”

Professor Sandra Chapman, from Warwick’s Centre for Fusion, Space and Astrophysics, led a project which charted the space weather in previous solar cycles across the last half century, and discovered an underlying repeatable pattern in how space weather activity changes with the solar cycle.

This exciting research shows that space weather and the activity of the Sun are not entirely random-and may constrain how likely large weather events are in future cycles. This breakthrough will allow better understanding and planning for space weather, and for any future threats it may pose to the Earth.

__________________

Science Of Cycles Research Fund

Science Of Cycles keeps you tuned in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

 

‘Archived’ Heat Has Reached Deep Into The Arctic Interior, Researchers Say

Arctic sea ice isn’t just threatened by the melting of ice around its edges, a new study has found: Warmer water that originated hundreds of miles away has penetrated deep into the interior of the Arctic.

That “archived” heat, currently trapped below the surface, has the potential to melt the region’s entire sea-ice pack if it reaches the surface, researchers say.

The study appears online Aug. 29 in the journal Science Advances.

“We document a striking ocean warming in one of the main basins of the interior Arctic Ocean, the Canadian Basin,” said lead author Mary-Louise Timmermans, a professor of geology and geophysics at Yale University.

The upper ocean in the Canadian Basin has seen a two-fold increase in heat content over the past 30 years, the researchers said. They traced the source to waters hundreds of miles to the south, where reduced sea ice has left the surface ocean more exposed to summer solar warming. In turn, Arctic winds are driving the warmer water north, but below the surface waters.

“This means the effects of sea-ice loss are not limited to the ice-free regions themselves, but also lead to increased heat accumulation in the interior of the Arctic Ocean that can have climate effects well beyond the summer season,” Timmermans said. “Presently this heat is trapped below the surface layer. Should it be mixed up to the surface, there is enough heat to entirely melt the sea-ice pack that covers this region for most of the year.”

Part II – Lunar and Solar Eclipse and Related Earth Changing Events

First, thank you for your well wishes, and a pleasant surprise from some who responded to my addressing the love I have for my work and in ways reflects that of my marriage and family.

“I think you know I love what I do, but what’s really rewarding is when it loves me back. I attribute my thoughts to that of a healthy marriage. To give a hundred percent is a good thing, but many of us who are married, add a bit more if you have kids, realize that sometimes a hundred percent is not enough. This is to say; even on those times when you are absolutely right on this, that, or the other, it’s better to let your partner be right too.”

This was written without conscience, which ironically, defines its literal meaning. This gives me hope that just maybe my inside matches my outside. So it really touched me to see your response, and I’m guessing it must have touched a part of you, or at least caused you to pause if only for a second or minute. If those of you who commented bringing your thoughts to my attention, I would not have noticed any such possible deeper understanding. Thanks

But to maintain full disclosure…I do not always measure up to this worthy principle mentioned above. Nonetheless, I do hold it as an ideal, trying at most turns to maintain it as my default. Oh, and btw, the piggy bank is still pretty empty. Go to the following link to help keep us alive: CLICK HERE

__________________

Okay, now let’s get to the science of things:

You will see a list of significant earthquakes following below. But first, let me highlight the ’cause’ of events as it relates to both Lunar and Solar eclipse. My research points to a 14 day prior and 14 day post window lunar or solar events.

As it relates to a lunar eclipse, the stimulant which precipitates events such as earthquakes and volcanoes is the ‘fluid displacement’ initiated by gravitational tugs causing unusual high tides placing additional weight (pressure) on tectonic plates causing slippage.

The term fluid displacement is not just related to oceans; it includes fluids such as magma, oil, liquefied sediment, and even gas processes. It is the expansion [or contraction] of fluids on tectonic plates which cause the increase of larger earthquakes or volcanic eruptions.

As it relates to solar eclipse, it is the sudden temperature fluctuation which can cause a chain reaction. By presenting a sudden and rapid shift in both the jet stream and ocean currents, this in-turn can cause a destabilizing of set seasonal patterns. Although temperature flux may be subtle, if tectonics are at their tipping point, it would not take much to set them off. Additionally, the rapid temperature change can cause an expansion and contraction of Earth’s lithosphere, even if ever so slight, can set off a chain reaction of tectonic slippage resulting in significant earthquakes and volcanic eruptions.

Remember, the majority of volcanoes are submarine (ocean bottom); hence the rapid shift in ocean temperatures is also prone to set off a rippling effect which is often unpredictable due to the spider webbing tentacles which connect a system of mantle plumes and volcanoes.

Significant Earthquakes Between JULY 15TH – AUGUST 19TH

2018-08-19  T15:16:34.100Z  5.9  8km ESE of Sembalunbumbung, Indonesia

2018-08-19  T14:56:28.090Z  6.9  2km S of Belanting, Indonesia

2018-08-19  T04:28:59.760Z  6.8  282km ESE of Lambasa, Fiji

2018-08-19  T04:10:21.570Z  6.3  6km NE of Sembalunlawang, Indonesia

2018-08-19  T00:23:02.740Z  6.3  259km NNE of Ndoi Island, Fiji

2018-08-19  T00:19:37.970Z  8.2  280km NNE of Ndoi Island, Fiji

2018-08-17  T23:22:24.900Z  6.1  14km N of Golfito, Costa Rica

2018-08-17  T15:35:02.070Z  6.5  109km NNW of Kampungbajo, Indonesia

2018-08-16  T18:22:53.350Z  6.3  250km SE of Iwo Jima, Japan

2018-08-15  T21:56:54.780Z  6.6  50km S of Tanaga Volcano, Alaska

2018-08-14  T03:29:53.440Z  6.1  126km NE of Bristol Island, South Sandwich Islands

2018-08-12  T21:15:01.841Z  6.1  65km SSW of Kaktovik, Alaska

2018-08-12  T14:58:54.286Z  6.3  90km SW of Kaktovik, Alaska

2018-08-10  T18:12:06.880Z  5.9  267km SSW of Severo-Kuril’sk, Russia

2018-08-09  T05:25:31.910Z  5.9  3km SE of Todo, Indonesia

2018-08-05  T11:46:38.190Z  6.9  0km SW of Loloan, Indonesia

2018-07-28  T22:47:38.740Z  6.4  5km WNW of Obelobel, Indonesia

2018-07-28  T17:07:23.370Z 6.0    149km N of Palue, Indonesia

2018-07-23  T10:36:00.330Z 5.9  Central Mid-Atlantic Ridge

2018-07-21  T20:56:19.940Z  5.9  Southeast Indian Ridge

2018-07-19  T18:30:32.710Z  6.0  91km W of Kandrian, Papua New Guinea

2018-07-17  T07:02:53.020Z  6.0  116km SE of Lata, Solomon Islands

2018-07-15  T13:09:16.470Z  6.0  159km SSE of Sayhut, Yemen

2018-07-15  T01:57:19.410Z  6.0  137km SSE of Sayhut, Yemen

Part III – identifies the latest in cosmic ray discoveries and its effect on our galaxy-solar system-Sun-Earth. There will be many surprises.

Science Of Cycles News and Research Support