ASKAP Test Finds “Monster” Black Hole

Imagine trying on new pair of spectacles and when glancing around to test them you spot a monster—that’s exactly what happened when the ASKAP antennas were turned towards a group of three merging galaxies 1.8 billion light years away.

askaptestfin

The monster concerned is a supermassive black hole with a mass 3 billion times that of the Sun.

All galaxies are believed to house a huge black hole at their centre, but this one is gigantic by cosmic standards.

It is 750 times bigger than the black hole at the centre of the Milky Way—which is a modest 4 million solar masses.

Black holes grow by drawing in material including other black holes that venture too close, and in this case the black holes from the three galaxies have merged.

Dr Lisa Harvey-Smith from CSIRO Astronomy and Space Science and her team knew of a strong source of radiowaves, known as an astrophysical maser, in the group and pointed the array of antennas toward it.

The results were checked by the Australia Telescope Compact Array telescope at Narrabri which found the gas forming the maser was moving at around 600 kilometres per second, or around 500 times the speed of a rifle cartridge.

Knowing the speed of the gas they were able to directly measure the mass of the black hole that was causing the gas to swirl.

1-askaptestfin

ASKAP (the Australian Square Kilometre Array Pathfinder) is the precursor to the Square Kilometer Array and is being built in the Murchison.

When finished ASKAP will have 36 identical antennas, each 12m in diameter that will work together as a single instrument.

“The full 36 antennas will be online by 2018,” Dr Harvey-Smith says.

“We currently have nine antennas doing commissioning and testing, and our early science program will begin when we have 12 antennas ready.”

Dr George Heald who leads the CSIRO Astrophysics group in Perth says ASKAP’s advantage lies in sporting CSIRO’s own receiver technology called Phased Array Feed (PAF), which is like a digital camera for use in radio astronomy.

“It allows us to map a huge area of the sky a lot faster than by using a traditional radio telescope,” he says.

Perth team member Aidan Hotan says that most of the science planned for ASKAP has to do with understanding the structure and composition of the universe out to greater distances and over wider areas than ever before.

Second Strongest Shock Wave Found In Merging Galaxy Clusters

The discovery by a physics doctoral student at The University of Alabama in Huntsville (UAH) of the second-strongest merger shock in clusters of galaxies ever observed has generated excitement that is opening doors to further scientific exploration.
cluster
Sarthak Dasadia, who is advised by assistant physics professor Dr. Ming Sun, discovered the very strong shock in the merging galaxy cluster Abell 655 using observations from the Chandra X-ray Observatory.

The shock to the north of this cluster is second in strength only to the Bullet Cluster shock.

The shock is traveling with an astonishing speed of 2,700 kilometers per second, about three times the local speed of sound in the cluster. By comparison, NASA’s Juno spacecraft in 2013 became the fastest human-made object when it was slingshot around Earth toward Jupiter at a relatively pedantic 40 kilometers a second.

“Studying mergers of galaxy clusters has proven to be crucial to our understanding of how such large scale objects form and evolve,” says Dasadia. Shocks provide unique opportunities to study high-energy phenomena in the intra-cluster medium — the hot plasma between galaxies.

“This could open a door, where people can do a number of different studies based on what I have found,” Dasadia says. Already, scientists are targeting shocks in galaxy clusters to study dark matter, the magnetic field in the intracluster space, particle acceleration and energy transfer in the intracluster medium.

In only 10 days, Dasadia’s research was accepted for publication by The Astrophysical Journal Letters. Dasadia recently received one year of research support from the Alabama EPSCoR Graduate Research Scholars Program (ALEPSCoR). He also gave an oral presentation on his research in August at the International Astronomical Union (IAU) General Assembly in Honolulu, Hawaii.

The universe is populated with galaxy clusters that are relaxed and unrelaxed, Dasadia says. The relaxed ones are mellow — they’ve been around a lot longer, have seen lots of past mergers and really aren’t dynamically active. It’s the unrelaxed clusters like Abell 665 that are good candidates to study merger features such as shocks and turbulence.

“These galaxy clusters are not boundary objects,” he says. “They do not have a very well-defined boundary around them.”

When the undefined boundaries of massive clusters of galaxies 3 million light-years across are drawn together in a slow-motion collision, their cold cores and surrounding hot gases are disrupted into shock waves and gas fronts of various temperatures.

“When two cold cores collide, they may create a shock of heated gas,” Dasadia says. “Such mergers are actually among the most energetic events in the universe, other than the Big Bang itself.”

If talking about fronts and shock waves and temperature differentials sounds lot like the weather on Earth, Dasadia says that’s because there is not much difference as far as the physics involved.

“Technically, we observe the same features in space that we do on Earth,” he says. “This area has been studied extensively before at small scales, but few had done the work to discover what I found here at such big scales.”

He was able to measure the velocity of the collision and the dynamics of what is happening in it — or rather, what was happening in it. It took 3.2 billion years for the light in the observations to reach Earth, so the events all happened that far back in time. Dynamic observations included the energy in the collision, the gas movement, and measurements of the discrepancy between the visible and dark matter involved.

“It amazes me how long it takes for this information to even reach the Earth,” Dasadia says. “Then I am also amazed by our technology, by how much we have advanced in developing the telescopes and equipment it takes to be able to observe and study these interactions.”

UPDATE: New Sources of Charged Particles Discovered

Researchers from the University of Cambridge, used data from the European Space Agency’s (ESA) XMM-Newton space observatory to reveal for the first time strong winds gusting at very high speeds from two mysterious sources of x-ray radiation. The discovery, published in the journal Nature, confirms that these sources conceal a compact object pulling in matter at extraordinarily high rates.

two black holes eating star

Two black holes in nearby galaxies have been observed devouring their companion stars at a rate exceeding classically understood limits, and in the process, kicking out charged particles into surrounding space at astonishing speeds of around a quarter the speed of light.
_____________

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.    – CLICK HERE –

“We think these newly discovered sources we are calling ‘ultra-luminous x-rays’ come from special binary systems, sucking up gas at a much higher rate than an ordinary x-ray binary,” said Dr Ciro Pinto from Cambridge’s Institute of Astronomy, the paper’s lead author. “Some of these sources host highly magnetized neutron stars, while others might conceal the long-sought-after intermediate-mass black holes, which have masses around one thousand times the mass of the Sun. But in the majority of cases, the reason for their extreme behavior is still unclear.”

xmm_newton_esa

Pinto and his colleagues collected several days’ worth of observations of three ultra-luminous x-ray sources, all located in nearby galaxies located less than 22 million light-years from the Milky Way. The data was obtained over several years with the Reflection Grating Spectrometer on XMM-Newton, which allowed the researchers to identify subtle features in the spectrum of the x-rays from the sources.

In all three sources, the scientists were able to identify x-ray emission from gas in the outer portions of the disc surrounding the central compact object, slowly flowing towards it.

ngc_1313_galaxy

But two of the three sources – known as NGC 1313 X-1 and NGC 5408 X-1 – also show clear signs of x-rays being absorbed by gas that is streaming away from the central source at 70,000 kilometers per second – almost a quarter of the speed of light.

“This is the first time we’ve seen winds streaming away from ultra-luminous x-ray sources,” said Pinto. “And the very high speed of these outflows is telling us something about the nature of the compact objects in these sources, which are frantically devouring matter.”

NCG 5408

While the hot gas is pulled inwards by the central object’s gravity, it also shines brightly, and the pressure exerted by the radiation pushes it outwards. This is a balancing act: the greater the mass, the faster it draws the surrounding gas; but this also causes the gas to heat up faster, emitting more light and increasing the pressure that blows the gas away.

There is a theoretical limit to how much matter can be pulled in by an object of a given mass, known as the Eddington limit. The limit was first calculated for stars by astronomer Arthur Eddington, but it can also be applied to compact objects like black holes and neutron stars.

Eddington’s calculation refers to an ideal case in which both the matter being accreted onto the central object and the radiation being emitted by it do so equally in all directions.

But the sources studied by Pinto and his collaborators are potentially being fed through a disc which has been puffed up due to internal pressures arising from the incredible rates of material passing through it. These thick discs can naturally exceed the Eddington limit and can even trap the radiation in a cone, making these sources appear brighter when we look straight at them. As the thick disc moves material further from the black hole’s gravitational grasp it also gives rise to very high-speed winds like the ones observed by the Cambridge researchers.

“By observing x-ray sources that are radiating beyond the Eddington limit, it is possible to study their accretion process in great detail, investigating by how much the limit can be exceeded and what exactly triggers the outflow of such powerful winds,” said Norbert Schartel, ESA XMM-Newton Project Scientist.

The nature of the compact objects hosted at the core of the two sources observed in this study is, however, still uncertain.

Based on the x-ray brightness, the scientists suspect that these mighty winds are driven from accretion flows onto either neutron stars or black holes, the latter with masses of several to a few dozen times that of the Sun.

______________

_science of cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.

paypal donate_button

If the banner above is not working – CLICK HERE

 

 

UPDATE: New Sources of Charged Particles Discovered

The researchers, from the University of Cambridge, used data from the European Space Agency’s (ESA) XMM-Newton space observatory to reveal for the first time strong winds gusting at very high speeds from two mysterious sources of x-ray radiation. The discovery, published in the journal Nature, confirms that these sources conceal a compact object pulling in matter at extraordinarily high rates.

two black holes eating star

Two black holes in nearby galaxies have been observed devouring their companion stars at a rate exceeding classically understood limits, and in the process, kicking out charged particles into surrounding space at astonishing speeds of around a quarter the speed of light.
_____________

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.    – CLICK HERE –

“We think these newly discovered sources we are calling ‘ultra-luminous x-rays’ come from special binary systems, sucking up gas at a much higher rate than an ordinary x-ray binary,” said Dr Ciro Pinto from Cambridge’s Institute of Astronomy, the paper’s lead author. “Some of these sources host highly magnetized neutron stars, while others might conceal the long-sought-after intermediate-mass black holes, which have masses around one thousand times the mass of the Sun. But in the majority of cases, the reason for their extreme behavior is still unclear.”

xmm_newton_esa

Pinto and his colleagues collected several days’ worth of observations of three ultra-luminous x-ray sources, all located in nearby galaxies located less than 22 million light-years from the Milky Way. The data was obtained over several years with the Reflection Grating Spectrometer on XMM-Newton, which allowed the researchers to identify subtle features in the spectrum of the x-rays from the sources.

In all three sources, the scientists were able to identify x-ray emission from gas in the outer portions of the disc surrounding the central compact object, slowly flowing towards it.

ngc_1313_galaxy

But two of the three sources – known as NGC 1313 X-1 and NGC 5408 X-1 – also show clear signs of x-rays being absorbed by gas that is streaming away from the central source at 70,000 kilometers per second – almost a quarter of the speed of light.

“This is the first time we’ve seen winds streaming away from ultra-luminous x-ray sources,” said Pinto. “And the very high speed of these outflows is telling us something about the nature of the compact objects in these sources, which are frantically devouring matter.”

NCG 5408

While the hot gas is pulled inwards by the central object’s gravity, it also shines brightly, and the pressure exerted by the radiation pushes it outwards. This is a balancing act: the greater the mass, the faster it draws the surrounding gas; but this also causes the gas to heat up faster, emitting more light and increasing the pressure that blows the gas away.

There is a theoretical limit to how much matter can be pulled in by an object of a given mass, known as the Eddington limit. The limit was first calculated for stars by astronomer Arthur Eddington, but it can also be applied to compact objects like black holes and neutron stars.

Eddington’s calculation refers to an ideal case in which both the matter being accreted onto the central object and the radiation being emitted by it do so equally in all directions.

But the sources studied by Pinto and his collaborators are potentially being fed through a disc which has been puffed up due to internal pressures arising from the incredible rates of material passing through it. These thick discs can naturally exceed the Eddington limit and can even trap the radiation in a cone, making these sources appear brighter when we look straight at them. As the thick disc moves material further from the black hole’s gravitational grasp it also gives rise to very high-speed winds like the ones observed by the Cambridge researchers.

“By observing x-ray sources that are radiating beyond the Eddington limit, it is possible to study their accretion process in great detail, investigating by how much the limit can be exceeded and what exactly triggers the outflow of such powerful winds,” said Norbert Schartel, ESA XMM-Newton Project Scientist.

The nature of the compact objects hosted at the core of the two sources observed in this study is, however, still uncertain.

Based on the x-ray brightness, the scientists suspect that these mighty winds are driven from accretion flows onto either neutron stars or black holes, the latter with masses of several to a few dozen times that of the Sun.

______________

_science of cycles33

Mitch Battros and Science of Cycles Research Sponsorship Fundraiser – Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive.

paypal donate_button

If the banner above is not working – CLICK HERE

 

 

BREAKING NEWS: Examination of Ancient Text Reveals Details of Supernova

German researches have uncovered evidence of the Arabic scholar Ibn Sina’s sighting of supernova 1006 (SN 1006). The new evidence will sit alongside that of others around that globe that reported details of what has been described as the brightest stellar event ever recorded by human beings.

supernova34

Ibn Sina was a Persian scientist and philosopher, who as part of his observations, traveled a lot and wrote about what he saw, along with his interpretations of subjects ranging from medicine to astronomy. One of the texts named Kitab al-Shifa, related to physics, meteorology, and especially astronomy that caught the attention of the researchers. A section of particular note described a bright object appearing in the sky in the year 1006. The section had been studied before, but the account had been attributed to a discussion of a comet.

ibn-Sina in al-Shifa

Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive .                                              – CLICK HERE –

In their recorded paper, German researchers Ralph Neuhaeuser, Carl Ehrig-Eggert and Paul Kunitzsch present the translation of ancient skygazer Ibn Sina’s text, describe an object that was very bright and that changed color over time before fading away – even noting at one point the object threw out sparks. The researchers suggest the description was actually that of SN 1006.

type-la-supernova

SN 1006 was noted and described by others around the world, from places such as Morocco, Japan, Yemen and China, but none of those descriptions included information about the object changing colors. Sina wrote the object started out as faint greenish-yellow, that it twinkled especially at its brightest, and then became whitish before it disappeared altogether.

2 white dwarfs colliding

Most modern astronomers believe that SN 1006 was not just a Ia supernova (which occur when a white dwarf is pulled into another star causing it to blow up due to the overabundance of matter), but that it was the result of two white dwarfs colliding. This new information from an ancient part-time astronomer, the researchers suggest, may help to better understand an event that occurred over a thousand years ago.

__________________________

science-of-cycles600x600

Be part of keeping ‘Science of Cycles’ alive and free. Your support is needed to keep this unique and valuable resource. Help sponsor us with your pledge as you see fit to the value you receive .


paypal donate_button_sm
If link on banner is not working -CLICK HERE-

JUST IN: Examination of Ancient Text Reveals Details of Supernova

A trio of German researches has uncovered evidence of the Arabic scholar Ibn Sina’s sighting of supernova 1006 (SN 1006). The new evidence will sit alongside that of others around that globe that reported details of what has been described as the brightest stellar event ever recorded by human beings. In their paper uploaded to the preprint server arXiv, Ralph Neuhaeuser, Carl Ehrig-Eggert and Paul Kunitzsch describe the text under study, their translation of it and the relevance of the information recorded by the ancient skygazer.

supernova 1006

Ibn Sina was a Persian scientist and philosopher, who as part of his observations, traveled a lot and wrote about what he saw, along with his interpretations of subjects ranging from medicine to astronomy. It was one of those texts, called Kitab al-Shifa, about physics, meteorology, and especially astronomy that caught the attention of the researchers – most particularly a section that described a bright object appearing in the sky in the year 1006. The section had been studied before, but the account had been attributed to a discussion of a comet.

In this latest look, the researchers suggest that the description was actually that of SN 1006. In addition to the timing, the detailed description, they note, sounds more like the sudden appearance of an exploding star. In their translation, Sina describes an object that was very bright and that changed color over time before fading away – even noting at one point that the object threw out sparks.

Ibn Sina Kitab al-Shifa

SN 1006 was noted and described by others around the world, from places as far-flung as Morocco, Japan, Yemen and China, but none of those descriptions included information about the object changing colors. Sina wrote that the object started out as faint greenish-yellow, that it twinkled a lot, especially at its brightest, and that it became whitish before it disappeared altogether.

Most modern astronomers believe that SN 1006 was not just a Ia supernova (which occur when a white dwarf is pulled into another star causing it to blow up due to the overabundance of matter), but that it was the result of two white dwarfs colliding. This new information from an ancient part-time astronomer, the researchers suggest, may help to better understand an event that occurred over a thousand years ago.

 

BREAKING NEWS: A Dramatic Galactic Explosion Arrived at Earth in 2012

A dramatic explosion occurred from a galaxy known as PKS B1424-418. Light from this blast began arriving at Earth in 2012. On Dec. 4, 2012, the IceCube Neutrino Observatory at the South Pole detected an event known as Big Bird – a neutrino gamma ray blazer with an energy exceeding 2 quadrillion electron volts (PeV). Now, an international team of astronomers, led by Matthias Kadler, professor for astrophysics at the University of Würzburg, has published their results in the scientific journal Nature Physics.

dec 2012 blazer hits milky way and earth

Starting in the summer of 2012, NASA’s Fermi satellite witnessed a dramatic brightening of PKS B1424-418, an active galaxy classified as a gamma-ray blazar. An active galaxy is an otherwise typical galaxy with a compact and unusually bright core. The excess luminosity of the central region is produced by matter falling toward a supermassive black hole weighing millions of times the mass of our Sun. As it approaches the black hole, some of the material becomes channeled into particle jets moving outward in opposite directions at nearly the speed of light. In blazars one of these jets happens to point almost directly toward Earth.

During the year-long outburst, PKS B1424-418 shone between 15 and 30 times brighter in gamma rays than its average before the eruption. The blazar is located within the Big Bird source region, but then so are many other active galaxies detected by Fermi.

milky-way-solar-system

The scientists searching for the neutrino source then turned to data from a long-term observing program named TANAMI. Since 2007, TANAMI has routinely monitored nearly 100 active galaxies in the southern sky, including many flaring sources detected by Fermi. Three radio observations between 2011 and 2013 cover the period of the Fermi outburst. They reveal that the core of the galaxy’s jet had been brightening by about four times. No other galaxy observed by TANAMI over the life of the program has exhibited such a dramatic change.

“Within their jets, blazars are capable of accelerating protons to relativistic energies. Interactions of these protons with light in the central regions of the blazar can create pions. When these pions decay, both gamma rays and neutrinos are produced,” explains Karl Mannheim, a coauthor of the study and astronomy professor in Würzburg, Germany. “We combed through the field where Big Bird must have originated looking for astrophysical objects capable of producing high-energy particles and light,” adds coauthor Felicia Kraub from the University of Erlangen-Nürnberg in Germany.

tanami_sky_world10

In published report, the team suggests the PKS B1424-418 outburst and Big Bird are linked, calculating only a 5-percent probability the two events occurred by chance alone. Using data from Fermi, NASA’s Swift and WISE satellites, the LBA and other facilities, the researchers determined how the energy of the eruption was distributed across the electromagnetic spectrum and showed that it was sufficiently powerful to produce a neutrino at PeV energies.

[