JUST IN: New High-Energy Sources of Gamma and Cosmic Rays Discovered

A new sky map using the High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory shows many new gamma ray sources within our own Milky Way galaxy. HAWC gives us a new way to see the high-energy sky. “This new data from HAWC shows the galaxy in unprecedented detail, revealing new high-energy sources and previously unseen details about existing sources.” said Jordan Goodman, professor of physics at the University of Maryland.

gamma ray burst233

Today, scientists operating HAWC released a new survey of the sky made from the highest energy gamma rays ever observed. The new sky map, which uses data collected since the observatory began running at full capacity last March, offers a deeper understanding of high-energy processes taking place in our galaxy and beyond.

In a region of the Milky Way where researchers previously identified a single gamma ray source named TeV J1930+188, HAWC identified several hot spots, indicating that the region is more complicated than previously thought.

new_equation 2012_m

New Equation:
Increase Charged Particles  and Decreasing Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

“Studying these objects at the highest energies can reveal the mechanism by which they produce gamma rays and possibly help us unravel the hundred-year-old mystery of the origin of high-energy cosmic rays that bombard Earth from space,” said Goodman.

HAWC_graphic02_m

HAWC-located 13,500 feet above sea level on the slopes of Mexico’s Volcán Sierra Negra-contains 300 detector tanks, each holding 50,000 gallons of ultrapure water with four light sensors anchored to the floor. When gamma rays or cosmic rays reach Earth’s atmosphere they set off a cascade of charged particles, and when these particles reach the water in HAWC’s detectors, they produce a cone-shaped flash of light known as Cherenkov radiation. The effect is much like a sonic boom produced by a supersonic jet, because the particles are traveling slightly faster than the speed of light in water when they enter the detectors.

HAWC Gamma-ray Observatory

Because HAWC observes 24 hours per day and year-round with a wide field-of-view and large area, the observatory boasts a higher energy reach for extended objects. In addition, HAWC can uniquely monitor for gamma ray flares by sources in our galaxy and other active galaxies, such as Markarian 421 and Markarian 501.

Interstellar Dust From Beyond Our Solar System Analyzed

Interstellar dust is one of the last bastions of the unknown in space, its individual particles being only about 200 nanometers in size and very hard to find,” explains Prof. Dr. Mario Trieloff, Earth scientist from Heidelberg University. The dust is part of the interstellar material consisting of gas and helium, as well as heavy metals, and which can arise from the condensation processes of stars and planets. These particles are the raw material that were the main building blocks for Earth and other terrestrial planets.

intersteller-dust

When it comes to studying interstellar dust, science has so far depended on particles reaching our solar system. The Stardust space probe was already able to capture particles of the very weak flux crossing our solar system. “But these particles were unusually large, so the research findings are possibly not representative,” Prof. Trieloff says. By contrast, the Cassini probe could identify 36 particles of interstellar dust among millions of planetary dust particles. Furthermore the CDA is in a position to analyze them on the spot with the assistance of mass spectrometry. This has enabled much more precise results than before.

Dr. Frank Postberg, on a Heisenberg grant at the Institute for Earth Science, notes that mass spectrometric measurements can now be made for the first time on “a statistically significant quantity of such dust particles.” This process had only become possible through a complex series of tests conducted in Heidelberg to calibrate laboratory models of the CDA. To achieve this aim, silicate dust had to be accelerated in the laboratory to upwards of 40 km a second, which is roughly the speed of interstellar dust.

“The result of the measurements was truly amazing,” Dr. Postberg reports. “The 36 particles of interstellar origin, that are very similar in their composition, contain a mix of the most important rock-forming elements — magnesium, iron, silicon and calcium — in average cosmic abundance. Although a dust particle has a mass of less than a trillionth of a gram, the whole element mix of the cosmos is collected there, with the exception of very volatile gases. Such particles cannot be found in our solar system.” Most scientists had expected dust populations with different compositions, corresponding to the different processes of origin in atmospheres of dying stars. These differences are also found in the stellar dust of meteorites, which is highly individual in its isotope composition. “Our data tells a completely different story,” he underlines.

According to the scientists, the dust has lost its individuality because it was homogenized in the cosmic “witch’s cauldron” of the interstellar medium. It contains gigantic, million-degree hot bubbles of supernova explosions, whose edges arise from shock fronts expanding at hundreds of kilometers per second, explains Dr. Nicolas Altobelli, who is the first author and a scientist at the European Space Agency (ESA).

There had already been a theory, he says, that interstellar dust can survive this energy-rich environment for only a few hundred million years and that very few “lucky survivors” succeed in reaching newly forming planetary systems as intact stellar dust. The latest research results now confirm that most particles are destroyed and reformed in molecular clouds, i.e. cool, dense regions of outer space. Interstellar winds bring these particles as homogenized dust into our solar system.

Do Black Holes Really Suck In All Matter?

black-hole empty matter

For the last four years, physicists studying the mathematical underpinnings of black holes have been wrestling with a strange idea; that black holes contain a region known as a “firewall,” which would stop matter from entering. However, a new paper titled Naked Black Hole Firewalls.

For the last four years, physicists studying the mathematical underpinnings of black holes have been wrestling with a strange idea; that black holes contain a region known as a “firewall,” which would stop matter from entering. However, a new paper titled Naked Black Hole Firewalls.

black-hole empty matter

“The hypothetical black hole firewall is one of the hottest problems in physics today, and we hope that our paper makes a significant contribution to the field,” says of Alberta physics professor Don N. Page.

Page’s contributors include Pisin Chen of the National Taiwan University and Stanford University, Yen Chin Ong of the Nordic Institute for Theoretical Physics (Nordita), Misao Sasaki of Kyoto University and Dong-han Yeom of the National Taiwan University.

The classic picture of a black hole comes directly from Einstein’s theory of general relativity: a massive object that warps the fabric of space-time and becomes so steep that not even light has sufficient speed to escape.

In the 1970s, physicist Stephen Hawking proposed that some particles could in fact escape from a black hole through a process involving the creation of entangled particles, in a theory now known as Hawking radiation. Since then, the field of black hole physics has been a wellspring of interesting phenomena, requiring the mathematics of both quantum theory and general relativity for a complete description.

In quantum mechanics, the two principles of quantum determinism and reversibility suggest that information must always be preserved. But since material falling into a black hole – along with the information describing that material, it be lost sometime after they cross the event horizon.

“If a firewall exists, not only would an in-falling object be destroyed by it, but the destruction could be visible, even from the outside,” says Misao Sasaki, of Yukawa Institute for Theoretical Physics in Kyoto, Japan.

If a firewall actually exists, the authors argue that it would not simply be confined to a region within the black hole, but its destructive power could reach beyond the limits of the event horizon, into a region of space that could be observed. This makes the notion of firewalls less conservative than previously thought, and suggests putting more effort into finding a better solution to the firewall paradox.

BREAKING NEWS: New Discovery of Mysterious Alignment of Black Holes

Deep radio imaging by researchers in the University of Cape Town and University of the Western Cape, in South Africa, has revealed that supermassive black holes in a region of the distant universe are all spinning out radio jets in the same direction. The astronomers publish their results to the Royal Astronomical Society.

eso1030

The jets are produced by the supermassive black holes at the center of these galaxies, and the only way for this alignment to exist is if supermassive black holes are all spinning in the same direction, says Prof Andrew Russ Taylor, joint UWC/UCT SKA Chair, Director of the recently-launched Inter-University Institute for Data Intensive Astronomy, and principal author of the Monthly Notices study.

galactic jets4

Earlier observational studies had previously detected deviations from uniformity (so-called isotropy) in the orientations of galaxies. But these sensitive radio images offer a first opportunity to use jets to reveal alignments of galaxies on physical scales of up to 100 Mpc. And measurements from the total intensity radio emission of galaxy jets have the advantage of not being affected by effects such as scattering, extinction and Faraday Radiation, which may be an issue for other studies.

bipolar jets

So what could these large-scale environmental influences during galaxy formation or evolution have been? There are several options: cosmic magnetic fields; fields associated with exotic particles (axions); and cosmic strings are only some of the possible candidates that could create an alignment in galaxies even on scales larger than galaxy clusters. It’s a mystery, and it’s going to take a while for technology and theory alike to catch up.

milky_way_system9_m

New Equation:
Increase Charged Particles  and Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

fatblackhole-m

The finding wasn’t planned for: the initial investigation was to explore the faintest radio sources in the universe, using the best available telescopes – a first view into the kind of universe that will be revealed by the South African MeerKAT radio telescope and the Square Kilometer Array (SKA), the world’s most powerful radio telescope and one of the biggest scientific instruments ever devised.

ancient black hole

UWC Prof Romeel Dave, SARChI Chair in Cosmology with Multi-Wavelength Data, who leads a team developing plans for universe simulations that could explore the growth of large-scale structure from a theoretical perspective, agrees: “This is not obviously expected based on our current understanding of cosmology. It’s a bizarre finding.”
__________________________

_science of cycles banner590x242Mitch Battros and Science of Cycles
Research Sponsorship Fundraiser

paypal fundraiser banner2

Help sponsor this drive with $10 or $10,000 – Current donation: $100
If above banner does not work – CLICK HERE

 

New Theories on Stellar Winds – Pulsating Magnetically Driven Radiative Energy

stellar pulsation3

A new study of the mechanism that drives stellar winds from the upper atmosphere of a star has shed new light. Astronomers think there are three possibilities: radiative, in which the pressure of the light pushes out the grains, magnetically driven, in which the stellar magnetic field plays a role in powering the flow, and pulsation driven, in which a periodic build-up of radiative energy in the stellar interior is suddenly released.

A new study of the mechanism that drives stellar winds from the upper atmosphere of a star has shed new light. Astronomers think there are three possibilities: radiative, in which the pressure of the light pushes out the grains, magnetically driven, in which the stellar magnetic field plays a role in powering the flow, and pulsation driven, in which a periodic build-up of radiative energy in the stellar interior is suddenly released.

stellar pulsation3

The winds of stars more evolved than the Sun (like the so-called giant stars that are cooler and larger in diameter than the Sun) often contain dust particles which enrich the interstellar medium with heavy elements. These winds also contain small grains on whose surfaces chemical reactions produce complex molecules. The dust also absorbs radiation and obscures visible light. Understanding the mechanism(s) that produce these winds in evolved stars is important both for modeling the wind and the character of the stellar environment, and for predicting the future evolution of the star.

stellar pulsation2

Nearly all stars have winds. The Sun’s wind, which originates from its hot outer layer (corona), contains charged particles emitted at a rate equivalent to about one-millionth of the moon’s mass each year. Some of these particles bombard the Earth, producing radio static, auroral glows, and (in extreme cases) disrupted global communications.

NASA'S Chandra Finds Fastest Wind From Stellar-Mass Black Hole
NASA’S Chandra Finds Fastest Wind From Stellar-Mass Black Hole

Over the years scientific opinion has varied among these alternatives, depending on each particular stellar example. Harvard–Smithsonian Center for Astrophysics Chris Johnson, and his colleagues explored the problem of wind-driving mechanism in giant stars by measuring the motion of the outflowing CO (carbon monoxide) gas around one the nearest and brightest giant stars, EU Del, which is only about 380 light-years away and shines with 1600 solar-luminosities.

new_equation 2012_m

New Equation:
Increase Charged Particles and Decreased Magnetic Field → Increase Outer Core Convection → Increase of Mantle Plumes → Increase in Earthquake and Volcanoes → Cools Mantle and Outer Core → Return of Outer Core Convection (Mitch Battros – July 2012)

Its radius, if the star were placed at the position of the Sun, would extend past the orbit of Venus. EU Del is known to be a semi-regular variable star which pulses every sixty days or so (but with some secondary periods as well), and infrared observations suggest it has a circumstellar dust shell.

The astronomers used the submillimeter APEX (Atacama Pathfinder Experiment) telescope to look at warm CO gas in the wind, making EU Del one of the first stars of its class to be studied with this relatively new tool. The team reports finding the CO moving at about ten kilometers per second (twenty two thousand miles per hour) with a total mass-loss rate equal to about the mass of the Moon each year.

BREAKING NEWS: Supernova Showered Earth with Radioactive Debris

An international team of scientists has found evidence of a series of massive supernova explosions near our solar system, which showered the Earth with radioactive debris. The scientists found radioactive iron-60 in sediment and crust samples taken from the Pacific, Atlantic and Indian Oceans.

supernova mingus

Some theories suggest cosmic rays from the supernova could have increased cloud cover. The scientists believe the supernova in this case were less than 300 light years away; close enough to be visible during the day and comparable to the brightness of the Moon.

The supernova explosions create many heavy elements and radioactive isotopes which are strewn into the cosmic neighborhood. Although Earth would have been exposed to an increased cosmic ray bombardment, the radiation would have been too weak to cause direct biological damage or trigger mass extinctions.

supernova3

Any iron-60 dating from the Earth’s formation more than four billion years ago has long since disappeared. The iron-60 atoms reached Earth in minuscule quantities and so the team needed extremely sensitive techniques to identify the interstellar iron atoms.

The team from Australia, the University of Vienna in Austria, Hebrew University in Israel, Shimizu Corporation and University of Tokyo, Nihon University and University of Tsukuba in Japan, Senckenberg Collections of Natural History Dresden and Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in Germany, also found evidence of iron-60 from an older supernova around eight million years ago, coinciding with global faunal changes in the late Miocene.

supernova_nedir

The iron-60 was concentrated in a period between 3.2 and 1.7 million years ago, which is relatively recent in astronomical terms, said research leader Dr Anton Wallner from The Australian National University (ANU).

“We were very surprised that there was debris clearly spread across 1.5 million years,” said Dr Wallner, a nuclear physicist in the ANU Research School of Physics and Engineering. “It suggests there were a series of supernova, one after another. “It’s an interesting coincidence that they correspond with when the Earth cooled and moved from the Pliocene into the Pleistocene period.”

stellar-wind

The dating showed the fallout had only occurred in two time periods, 3.2 to 1.7 million years ago and eight million years ago. Current results from TU Munich are in line with these findings.

A possible source of the supernova is an ageing star cluster, which has since moved away from Earth, independent work led by TU Berlin has proposed in a parallel publication. The cluster has no large stars left, suggesting they have already exploded as supernova, throwing out waves of debris.

New Study Shows How Black Holes and Galaxies Formed

Until recently, many researchers thought supermassive black holes were seeded by the collapse of some of the first stars. But modeling work by several groups has suggested that this process would only lead to small black holes.

how galaxies and black holes formed.jpg

Kentaro Nagamine at Osaka University’s Department of Earth and Space Science, Isaac Shlosman at the University of Kentucky and co-workers simulated a different situation, in which supermassive black holes are seeded by clouds of gas falling into potential wells created by dark matter – the invisible matter that astronomers believe makes up 85% of the mass of the Universe.

Simulating the dynamics of huge gas clouds is extremely complex, so the team had to use some numerical tricks called ‘sink particles’ to simplify the problem.

“Although we have access to extremely powerful supercomputers at Osaka University’s Cybermedia Center and the National Astronomical Observatory of Japan, we can’t simulate every single gas particle,” explains Nagamine. “Instead, we model small spatial scales using sink particles, which grow as the surrounding gas evolves. This allows us to simulate much longer timescales than was previously possible.”

The researchers found that most seed particles in their simulations did not grow very much, except for one central seed, which grew rapidly to more than 2 million Sun-masses in just 2 million years, representing a feasible path toward a supermassive black hole. Moreover, as the gas spun and collapsed around the central seed it formed two misaligned accretion discs, which have never been observed before.

In other recent work, Nagamine and co-workers described the growth of massive galaxies that formed around the same time as supermassive black holes. “We like to push the frontier of how far back in time we can see,” says Nagamine. The researchers hope their simulations will be validated by real data when NASA’s James Webb Space Telescope, due to be launched in 2018, observes distant sources where direct gas collapse is happening.