FOLLOW UP: Probability of Earth Changing Events Within 14 Day

Historical evidence indicates large significant Earth changing events related to a Full Solar Eclipse. A pattern of events falls within a 28 day ‘window’ – as in window of opportunity. My research exhibits a cluster of natural phenomena had historically occurred 14 days prior to an eclipse – or within 14 days after.

The reason for large events to occur prior to a solar eclipse is not yet fully known. I speculate it is related to celestial alignments whereas charged particles and electromagnetic plasma interacts with our Sun and planetary orbs, one of which is Earth.

Close to and during a full solar eclipse, it is the sudden temperature fluctuation which can cause a chain reaction. Producing a sudden and rapid shift in both the jet stream and ocean currents, can cause the destabilization of set seasonal patterns. Additionally, what is often referred to as Extreme Weather involving tornadoes, hurricanes, straight line winds, and wind shears is almost always related to shifting ocean and jet stream

Although temperature flux may be subtle, if tectonics are at their tipping point, it would not take much to set them off. Additionally, the rapid yet subtle temperature change can cause the expansion and contraction of Earth’s lithosphere, which could set off a chain reaction of tectonic slippage resulting in significant earthquakes and volcanic eruptions.

Remember, the majority of volcanoes are submarine (ocean bottom); hence the rapid shift in ocean temperatures is also prone to set off a rippling effect which is often unpredictable due to the spider webbing tentacles which connect a system of mantle plumes and volcanoes.

_______________

Science Of Cycles keeps you tuned-in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

 

Sun’s History Found Buried In Moon’s Crust

When the Sun was just a baby four billion years ago, it went through violent outbursts of intense radiation, spewing scorching, high-energy clouds and particles across the solar system. These growing pains helped seed life on early Earth by igniting chemical reactions that kept Earth warm and wet. Yet, these solar tantrums also may have prevented life from emerging on other worlds by stripping them of atmospheres and zapping nourishing chemicals.

Just how destructive these primordial outbursts were to other worlds would have depended on how quickly the baby Sun rotated on its axis. The faster the Sun turned, the quicker it would have destroyed conditions for habitability.

This critical piece of the Sun’s history, though, has bedeviled scientists, said Prabal Saxena, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Saxena studies how space weather, the variations in solar activity and other radiation conditions in space, interacts with the surfaces of planets and moons.

Now, he and other scientists are realizing that the Moon, where NASA will be sending astronauts by 2024, contains clues to the ancient mysteries of the Sun, which are crucial to understanding the development of life.

“We didn’t know what the Sun looked like in its first billion years, and it’s super important because it likely changed how Venus’ atmosphere evolved and how quickly it lost water. It also probably changed how quickly Mars lost its atmosphere, and it changed the atmospheric chemistry of Earth,” Saxena said.

The Sun-Moon Connection

Saxena stumbled into investigating the early Sun’s rotation mystery while contemplating a seemingly unrelated one: Why, when the Moon and Earth are made of largely the same stuff, is there significantly less sodium and potassium in lunar regolith, or Moon soil, than in Earth soil?

This question, too, revealed through analyses of Apollo-era Moon samples and lunar meteorites found on Earth, has puzzled scientists for decades — and it has challenged the leading theory of how the Moon formed.

Our natural satellite took shape, the theory goes, when a Mars-sized object smashed into Earth about 4.5 billion years ago. The force of this crash sent materials spewing into orbit, where they coalesced into the Moon.

“The Earth and Moon would have formed with similar materials, so the question is, why was the Moon depleted in these elements?” said Rosemary Killen, an planetary scientist at NASA Goddard who researches the effect of space weather on planetary atmospheres and exospheres.

The two scientists suspected that one big question informed the other — that the history of the Sun is buried in the Moon’s crust.

Killen’s earlier work laid the foundation for the team’s investigation. In 2012, she helped simulate the effect solar activity has on the amount of sodium and potassium that is either delivered to the Moon’s surface or knocked off by a stream of charged particles from the Sun, known as the solar wind, or by powerful eruptions known as coronal mass ejections.

Saxena incorporated the mathematical relationship between a star’s rotation rate and its flare activity. This insight was derived by scientists who studied the activity of thousands of stars discovered by NASA’s Kepler space telescope: The faster a star spins, they found, the more violent its ejections. “As you learn about other stars and planets, especially stars like our Sun, you start to get a bigger picture of how the Sun evolved over time,” Saxena said.

Using sophisticated computer models, Saxena, Killen and colleagues think they may have finally solved both mysteries. Their computer simulations, which they described on May 3 in the The Astrophysical Journal Letters, show that the early Sun rotated slower than 50% of baby stars. According to their estimates, within its first billion years, the Sun took at least 9 to 10 days to complete one rotation.

They determined this by simulating the evolution of our solar system under a slow, medium, and then a fast-rotating star. And they found that just one version — the slow-rotating star — was able to blast the right amount of charged particles into the Moon’s surface to knock enough sodium and potassium into space over time to leave the amounts we see in Moon rocks today.

“Space weather was probably one of the major influences for how all the planets of the solar system evolved,” Saxena said, “so any study of habitability of planets needs to consider it.”

Life Under the Early Sun

The rotation rate of the early Sun is partly responsible for life on Earth. But for Venus and Mars — both rocky planets similar to Earth — it may have precluded it. (Mercury, the closest rocky planet to the Sun, never had a chance.)

Earth’s atmosphere was once very different from the oxygen-dominated one we find today. When Earth formed 4.6 billion years ago, a thin envelope of hydrogen and helium clung to our molten planet. But outbursts from the young Sun stripped away that primordial haze within 200 million years.

As Earth’s crust solidified, volcanoes gradually coughed up a new atmosphere, filling the air with carbon dioxide, water, and nitrogen. Over the next billion years, the earliest bacterial life consumed that carbon dioxide and, in exchange, released methane and oxygen into the atmosphere. Earth also developed a magnetic field, which helped protect it from the Sun, allowing our atmosphere to transform into the oxygen- and nitrogen-rich air we breathe today.

“We were lucky that Earth’s atmosphere survived the terrible times,” said Vladimir Airapetian, a senior Goddard heliophysicist and astrobiologist who studies how space weather affects the habitability of terrestrial planets. Airapetian worked with Saxena and Killen on the early Sun study.

Had our Sun been a fast rotator, it would have erupted with super flares 10 times stronger than any in recorded history, at least 10 times a day. Even Earth’s magnetic field wouldn’t have been enough to protect it. The Sun’s blasts would have decimated the atmosphere, reducing air pressure so much that Earth wouldn’t retain liquid water. “It could have been a much harsher environment,” Saxena noted.

But the Sun rotated at an ideal pace for Earth, which thrived under the early star. Venus and Mars weren’t so lucky. Venus was once covered in water oceans and may have been habitable. But due to many factors, including solar activity and the lack of an internally generated magnetic field, Venus lost its hydrogen — a critical component of water. As a result, its oceans evaporated within its first 600 million years, according to estimates. The planet’s atmosphere became thick with carbon dioxide, a heavy molecule that’s harder to blow away. These forces led to a runaway greenhouse effect that keeps Venus a sizzling 864 degrees Fahrenheit (462 degrees Celsius), far too hot for life.

Mars, farther from the Sun than Earth is, would seem to be safer from stellar outbursts. Yet, it had less protection than did Earth. Due partly to the Red Planet’s weak magnetic field and low gravity, the early Sun gradually was able to blow away its air and water. By about 3.7 billion years ago, the Martian atmosphere had become so thin that liquid water immediately evaporated into space. (Water still exists on the planet, frozen in the polar caps and in the soil.)

After influencing the course for life (or lack thereof) on the inner planets, the aging Sun gradually slowed its pace and continues to do so. Today, it revolves once every 27 days, three times slower than it did in its infancy. The slower spin renders it much less active, though the Sun still has violent outbursts occasionally.

Exploring the Moon, Witness of Solar System Evolution

To learn about the early Sun, Saxena said, you need to look no further than the Moon, one of the most well-preserved artifacts from the young solar system.

“The reason the Moon ends up being a really useful calibrator and window into the past is that it has no annoying atmosphere and no plate tectonics resurfacing the crust,” he said. “So as a result, you can say, ‘Hey, if solar particles or anything else hit it, the Moon’s soil should show evidence of that.'”

Apollo samples and lunar meteorites are a great starting point for probing the early solar system, but they are only small pieces in a large and mysterious puzzle. The samples are from a small region near the lunar equator, and scientists can’t tell with complete certainty where on the Moon the meteorites came from, which makes it hard to place them into geological context.

Since the South Pole is home to the permanently shadowed craters where we expect to find the best-preserved material on the Moon, including frozen water, NASA is aiming to send a human expedition to the region by 2024.

If astronauts can get samples of lunar soil from the Moon’s southernmost region, it could offer more physical evidence of the baby Sun’s rotation rate, said Airapetian, who suspects that solar particles would have been deflected by the Moon’s erstwhile magnetic field 4 billion years ago and deposited at the poles: “So you would expect — though we’ve never looked at it — that the chemistry of that part of the Moon, the one exposed to the young Sun, would be much more altered than the equatorial regions. So there’s a lot of science to be done there.”

BREAKING NEWS: NASA Predicts Solar Cycle 25 Weakest in Last 200 Years

The forecast for the next solar cycle says it will be the weakest of the last 200 years. Research now underway has found a more reliable new method to predict this space weather. The maximum of this next cycle – measured in terms of sunspot numbers, could be 30 to 50% lower than the most recent one – Cycle 24. The results show the next cycle will start in 2020 and reach its maximum in 2025.

The new research was led by Irina Kitiashvili, a researcher with the Bay Area Environmental Research Institute at NASA’s Ames Research Center, in California’s Silicon Valley. It combined observations from two NASA space missions; Solar and Heliospheric Observatory and the Solar Dynamics Observatory with data collected since 1976 from the ground-based National Solar Observatory.

One challenge for researchers working to predict the Sun’s activities is that scientists do not yet completely understand the inner workings of our star. Some factors that play out deep inside the Sun cannot be measured directly. They have to be estimated from measurements of related phenomena on the solar surface like sunspots, coronal holes and filaments.

Kitiashvili’s method differs from other prediction tools in terms of the raw material for its forecast. Previously, researchers used the number of sunspots to represent indirectly the activity of the solar magnetic field. The new approach takes advantage of direct observations of magnetic fields emerging on the surface of the Sun.

NASA has been assigned to procure American astronauts to the Moon in the next five years with a landing on the lunar South Pole. With a calm and quiet space weather forecast for the coming decade, it is a great time to explore.

_______________

Science Of Cycles keeps you tuned-in and knowledgeable of what we are discovering, and how some of these changes will affect our communities and ways of living.

 

Solving The Sun’s Super-Heating Mystery With Parker Solar Probe

It’s one of the greatest and longest-running mysteries surrounding, quite literally, our sun — why is its outer atmosphere hotter than its fiery surface?

University of Michigan researchers believe they have the answer, and hope to prove it with help from NASA’s Parker Solar Probe.

In roughly two years, the probe will be the first human-made craft to enter the zone surrounding the sun where heating looks fundamentally different that what has previously been seen in space. This will allow them to test their theory that the heating is due to small magnetic waves traveling back and forth within the zone.

Solving the riddle would allow scientists to better understand and predict solar weather, which can pose serious threats to Earth’s power grid. And step one is determining where the heating of the sun’s outer atmosphere begins and ends — a puzzle with no shortage of theories.

“Whatever the physics is behind this superheating, it’s a puzzle that has been staring us in the eye for 500 years,” said Justin Kasper, a U-M professor of climate and space sciences and a principal investigator for the Parker mission. “In just two more years, Parker Solar Probe will finally reveal the answer.”

The U-M theory, and how the team will use Parker to test it, is laid out in a paper published June 4 in The Astrophysical Journal Letters.

In this “zone of preferential heating” above the sun’s surface, temperatures rise overall. More bizarre still, individual elements are heated to different temperatures, or preferentially. Some heavier ions are superheated until they’re 10 times hotter than the hydrogen that is everywhere in this area — hotter than the core of the sun.

Such high temperatures cause the solar atmosphere to swell to many times the diameter of the sun and they’re the reason we see the extended corona during solar eclipses. In that sense, Kasper says, the coronal heating mystery has been visible to astronomers for more than a half millenium, even if the high temperatures were only appreciated within the last century.

This same zone features hydromagnetic “Alfvén waves” moving back and forth between its outermost edge and the sun’s surface. At the outermost edge, called the Alfvén point, the solar wind moves faster than the Alfvén speed, and the waves can no longer travel back to the sun.

“When you’re below the Alfvén point, you’re in this soup of waves,” Kasper said. “Charged particles are deflected and accelerated by waves coming from all directions.”

In trying to estimate how far from the sun’s surface this preferential heating stops, U-M’s team examined decades of observations of the solar wind by NASA’s Wind spacecraft.

They looked at how much of helium’s increased temperature close to the sun was washed out by collisions between ions in the solar wind as they traveled out to Earth. Watching the helium temperature decay allowed them to measure the distance to the outer edge of the zone.

“We take all of the data and treat it as a stopwatch to figure out how much time had elapsed since the wind was superheated,” Kasper said. “Since I know how fast that wind is moving, I can convert the information to a distance.”

Those calculations put the outer edge of the superheating zone roughly 10 to 50 solar radii from the surface. It was impossible to be more definitive since some values could only be guessed at.

Initially, Kasper didn’t think to compare his estimate of the zone’s location with the Alfvén point, but he wanted to know if there was a physically meaningful location in space that produced the outer boundary.

After reading that the Alfvén point and other surfaces have been observed to expand and contract with solar activity, Kasper and co-author Kristopher Klein, a former U-M postdoc and new faculty at University of Arizona, reworked their analysis looking at year-to-year changes rather than considering the entire Wind Mission.

“To my shock, the outer boundary of the zone of preferential heating and the Alfvén point moved in lockstep in a totally predictable fashion despite being completely independent calculations,” Kasper said. “You overplot them, and they’re doing the exact same thing over time.”

So does the Alfvén point mark the outer edge of the heating zone? And what exactly is changing under the Alfvén point that superheats heavy ions? We should know in the next couple of years. The Parker Solar Probe lifted off in August 2018 and had its first rendezvous with the sun in November 2018 — already getting closer to the sun than any other human-made object.

In the coming years, Parker will get even closer with each pass until the probe falls below the Alfvén point. In their paper, Kasper and Klein predict it should enter the zone of preferential heating in 2021 as the boundary expands with increasing solar activity. Then NASA will have information direct from the source to answer all manner of long-standing questions.

“With Parker Solar Probe we will be able to definitively determine through local measurements what processes lead to the acceleration of the solar wind and the preferential heating of certain elements,” Klein said. “The predictions in this paper suggest that these processes are operating below the Alfvén surface, a region close to the sun that no spacecraft has visited, meaning that these preferential heating processes have never before been directly measured.”

Kasper is the principal investigator of the Solar Wind Electrons Alphas and Protons Investigation on the Parker Solar Probe. SWEAP’s sensors scoop up the solar wind and coronal particles during each encounter to measure velocity, temperature and density, and shed light on the heating mystery.

The research is funded by NASA’s Wind Mission.

Geomagnetic Storm Headed For Earth Could Mean Auroras Will Be Visible Over Parts Of U.S.

A geomagnetic storm warning has been issued following three coronal mass ejections (CME) from a giant sunspot. The National Oceanic and Atmospheric Administration’s Space Weather Prediction Center said that a minor geomagnetic storm watch is in effect for May 15 and May 16.

As a result of the storm, northern parts of the U.S. may be able to see auroras over the next few nights. A forecast map showing where the auroras may be visible can be seen below.

CMEs come from our sun’s outer atmosphere. This is a region that has extremely strong magnetic fields. When these fields close, they can suddenly eject matter in a huge explosion—a CME. This matter—sometimes a billion tons of it—is ejected into space, impacting any object it comes across.

When a CME explodes in the direction of Earth, the solar material interacts with atoms and molecules in our atmosphere. The collisions produce auroras.

The three CMEs responsible for the latest geomagnetic storm came from the sunspot group Region 2741. The series started on May 10 and material from the first two is expected to arrive on May 15. The third will likely reach Earth on May 16.

“The source location for the CMEs has been associated with disappearing solar filaments (DSF) along areas of the magnetic neutral line in the vicinity of the unipolar sunspot group, Region 2741,” an NOAA statement said.

A solar filament is a long line of colder material that hovers above the sun’s corona. NASA notes that these filaments can float along like this for days before they disappear. “Sometimes they also erupt out into space, releasing solar material in a shower that either rains back down or escapes out into space, becoming a moving cloud known as a coronal mass ejection, or CME,” the space agency noted.

Sunspots are temporary regions on the surface of the sun that are darker and colder than the surrounding area—around 4,500 degrees Celsius cooler.

According to SpaceWeather, the sunspot that the latest three CMEs came from appears to be disintegrating and is no longer able to produce huge CMEs that pose a greater risk to Earth. When the sun does produce large explosions, a strong geomagnetic storm has the potential to cause disruption to GPS systems, satellites and power grids.

At the moment, the sun is in a period of quiet known as the solar minimum. The sun’s activity increases and decreases on an 11-year cycle. The solar maximum, when activity peaks, sees an increase in the number of sunspots. The next solar maximum is expected to peak around 2024.

What A Dying Star’s Ashes Tell Us About The Birth Of Our Solar System

A grain of dust forged in the death throes of a long-gone star was discovered by a team of researchers led by the University of Arizona.

The discovery challenges some of the current theories about how dying stars seed the universe with raw materials for the formation of planets and, ultimately, the precursor molecules of life.

Tucked inside a chondritic meteorite collected in Antarctica, the tiny speck represents actual stardust, most likely hurled into space by an exploding star before our own sun existed. Although such grains are believed to provide important raw materials contributing to the mix from which the sun and our planets formed, they rarely survive the turmoil that goes with the birth of a solar system.

“As actual dust from stars, such presolar grains give us insight into the building blocks from which our solar system formed,” said Pierre Haenecour, lead author of the paper, which is scheduled for advance online publication on Nature Astronomy’s website on Apr. 29. “They also provide us with a direct snapshot of the conditions in a star at the time when this grain was formed.”

Dubbed LAP-149, the dust grain represents the only known assemblage of graphite and silicate grains that can be traced to a specific type of stellar explosion called a nova. Remarkably, it survived the journey through interstellar space and traveled to the region that would become our solar system some 4.5 billion years ago, perhaps earlier, where it became embedded in a primitive meteorite.

Novae are binary star systems in which a core remnant of a star, called a white dwarf, is on its way to fading out of the universe, while its companion is either a low-mass main sequence star or a red giant. The white dwarf then begins syphoning material off its bloated companion. Once it accretes enough new stellar material, the white dwarf re-ignites in periodic outbursts violent enough to forge new chemical elements from the stellar fuel and spew them deep into space, where they can travel to new stellar systems and become incorporated in their raw materials.

Since shortly after the Big Bang, when the universe consisted of only hydrogen, helium and traces of lithium, stellar explosions have contributed to the chemical enrichment of the cosmos, resulting in the plethora of elements we see today.

Taking advantage of sophisticated ion and electron microscopy facilities at the UA’s Lunar and Planetary Laboratory, a research team led by Haenecour analyzed the microbe-sized dust grain down to the atomic level. The tiny messenger from outer space turned out to be truly alien — highly enriched in a carbon isotope called 13C.

“The carbon isotopic compositions in anything we have ever sampled that came from any planet or body in our solar system varies typically by a factor on the order of 50,” said Haenecour, who will join the Lunar and Planetary Laboratory as an assistant professor in the fall. “The 13C we found in LAP-149 is enriched more than 50,000-fold. These results provide further laboratory evidence that both carbon- and oxygen-rich grains from novae contributed to the building blocks of our solar system.”

Although their parent stars no longer exist, the isotopic and chemical compositions and microstructure of individual stardust grains identified in meteorites provide unique constraints on dust formation and thermodynamic conditions in stellar outflows, the authors wrote.

Detailed analysis revealed even more unexpected secrets: Unlike similar dust grains thought to have been forged in dying stars, LAP-149 is the first known grain consisting of graphite that contains an oxygen-rich silicate inclusion.

“Our find provides us with a glimpse into a process we could never witness on Earth,” Haenecour added. “It tells us about how dust grains form and move around inside as they are expelled by the nova. We now know that carbonaceous and silicate dust grains can form in the same nova ejecta, and they get transported across chemically distinct clumps of dust within the ejecta, something that was predicted by models of novae but never found in a specimen.”

Unfortunately, LAP-149 does not contain enough atoms to determine its exact age, so researchers hope to find similar, larger specimens in the future.

“If we could date these objects someday, we could get a better idea of what our galaxy looked like in our region and what triggered the formation of the solar system,” said Tom Zega, scientific director of the UA’s Kuiper Materials Imaging and Characterization Facility and associate professor in the Lunar and Planetary Laboratory and UA Department of Materials Science and Engineering. “Perhaps we owe our existence to a nearby supernova explosion, compressing clouds of gas and dust with its shockwave, igniting stars and creating stellar nurseries, similar to what we see in Hubble’s famous ‘Pillars of Creation’ picture.”

The meteorite containing the speck of stardust is one of the most pristine meteorites in the Lunar and Planetary Laboratory’s collection. Classified as a carbonaceous chondrite, it is believed to be analogous to the material on Bennu, the target asteroid of the UA-led OSIRIS-REx mission. By taking a sample of Bennu and bringing it back to Earth, the OSIRIS-REx mission team hopes to provide scientists with material that has seen little, if any, alteration since the formation of our solar system.

Until then, researchers depend on rare finds like LAP-149, which survived being blasted from an exploding star, caught in a collapsing cloud of gas and dust that would become our solar system and baked into an asteroid before falling to the earth.

“It’s remarkable when you think about all the ways along the way that should have killed this grain,” Zega said.

Scientists Predict Sun’s Activity Will Be Weak During Next Solar Cycle

Scientists charged with predicting the sun’s activity for the next 11-year solar cycle say that it’s likely to be weak, much like the current one. The current solar cycle, Cycle 24, is declining and predicted to reach solar minimum—the period when the sun is least active—late in 2019 or 2020.

Solar Cycle 25 Prediction Panel experts said Solar Cycle 25 may have a slow start, but is anticipated to peak with solar maximum occurring between 2023 and 2026, and a sunspot range of 95 to 130. This is well below the average number of sunspots, which typically ranges from 140 to 220 sunspots per solar cycle. The panel has high confidence that the coming cycle should break the trend of weakening solar activity seen over the past four cycles.

“We expect Solar Cycle 25 will be very similar to Cycle 24: another fairly weak cycle, preceded by a long, deep minimum,” said panel co-chair Lisa Upton, Ph.D., solar physicist with Space Systems Research Corp. “The expectation that Cycle 25 will be comparable in size to Cycle 24 means that the steady decline in solar cycle amplitude, seen from cycles 21-24, has come to an end and that there is no indication that we are currently approaching a Maunder-type minimum in solar activity.”

The solar cycle prediction gives a rough idea of the frequency of space weather storms of all types, from radio blackouts to geomagnetic storms and solar radiation storms. It is used by many industries to gauge the potential impact of space weather in the coming years. Space weather can affect power grids, critical military, airline, and shipping communications, satellites and Global Positioning System (GPS) signals, and can even threaten astronauts by exposure to harmful radiation doses.

Solar Cycle 24 reached its maximum—the period when the sun is most active—in April 2014 with a peak average of 82 sunspots. The sun’s Northern Hemisphere led the sunspot cycle, peaking over two years ahead of the Southern Hemisphere sunspot peak.

Solar cycle forecasting is a new science

While daily weather forecasts are the most widely used type of scientific information in the U.S., solar forecasting is relatively new. Given that the sun takes 11 years to complete one solar cycle, this is only the fourth time a solar cycle prediction has been issued by U.S. scientists. The first panel convened in 1989 for Cycle 22.

For Solar Cycle 25, the panel hopes for the first time to predict the presence, amplitude, and timing of any differences between the northern and southern hemispheres on the sun, known as Hemispheric Asymmetry. Later this year, the Panel will release an official sunspot Number curve which shows the predicted number of sunspots during any given year and any expected asymmetry. The panel will also look into the possibility of providing a Solar Flare Probability Forecast.

“While we are not predicting a particularly active Solar Cycle 25, violent eruptions from the sun can occur at any time,” said Doug Biesecker, Ph.D., panel co-chair and a solar physicist at NOAA’s Space Weather Prediction Center.

An example of this occurred on July 23, 2012 when a powerful coronal mass ejection (CME) eruption missed the Earth but enveloped NASA’s STEREO-A satellite. A 2013 study estimated that the U.S. would have suffered between $600 billion and $2.6 trillion in damages, particularly to electrical infrastructure, such as power grid, if this CME had been directed toward Earth. The strength of the 2012 eruption was comparable to the famous 1859 Carrington event that caused widespread damage to telegraph stations around the world and produced aurora displays as far south as the Caribbean.

The Solar Cycle Prediction Panel forecasts the number of sunspots expected for solar maximum, along with the timing of the peak and minimum solar activity levels for the cycle. It is comprised of scientists representing NOAA, NASA, the International Space Environment Services, and other U.S. and international scientists. The outlook was presented on April 5 at the 2019 NOAA Space Weather Workshop in Boulder, Colo.