UPDATE: Earth’s Magnetic Field Shifts Much Faster Than Expected

It was back in January 2014, when NASA’s Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL)’s payload of thallium-activated sodium iodide, NaI(Tl) a crystalline material widely used for the detection of gamma-rays in scintillation detectors, saw something never seen before. During a moderate solar storm in which magnetic solar material collides with Earth’s magnetic field, BARREL mapped for the first time how the storm caused Earth’s magnetic field to shift and move.

earth's magnetic field lines

The fields’ configuration shifted much faster than expected – ‘on the order of minutes’ rather than hours or days. The results took researchers by such surprise causing them to check and re-check instruments and hypothesized outcomes. As a result, their findings were not published until last week on May 12 2016.

barrel

During the solar storm, three BARREL balloons were flying through parts of Earth’s magnetic field that directly connect a region of Antarctica to Earth’s north magnetic pole. One BARREL balloon was on a magnetic field line with one end on Earth and one end connected to the Sun’s magnetic field. And two balloons switched back and forth between closed and open field lines throughout the solar storm, providing a map of how the boundary between open and closed field lines moved.

“It is very difficult to model the open-closed boundary,” said Alexa Halford, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This will help with our simulations of how magnetic fields change around Earth, because we’re able to state exactly where we saw this boundary.”

solar-earth image cluster_m

We live in the path of the Sun’s outflow of charged particles, called the solar wind. Solar wind particles are accelerated to high speeds by explosions on the Sun or pushed along by plasma – clouds of solar material. Much of this magnetic field loops up and out into space, but then connects back to Earth at the north magnetic pole, near the Arctic Circle.

A portion of Earth’s magnetic field is open as it connects to the Sun’s magnetic field. This open magnetic field gives charged particles from the Sun a path into Earth’s atmosphere. Once particles are stuck to an open field line, they exceedingly accelerate down into the upper atmosphere. The boundary between these open and closed regions of Earth’s magnetic field is anything but constant. Due to various causes – such as incoming clouds of charged particles, the closed magnetic field lines can realign into open field lines and vice versa, changing the location of the boundary between open and closed magnetic field lines.

magnetic-shift

Scientists have known the open-closed boundary moves, but it is hard to pinpoint exactly how, when, and how quickly it changes – and that is where BARREL comes in. The six BARREL balloons flying during the January 2014 solar storm were able to map these changes, and they found something surprising – the open-closed boundary moves rapidly changing location within minutes.

It is possible, but unlikely, that complex dynamics in the magnetosphere gave the appearance that the BARREL balloons were dancing along this open-closed boundary. If a very fast magnetic wave was sending radiation belt electrons down into the atmosphere in short stuttering bursts, it could appear that the balloons were switching between open and closed magnetic field lines.

However, the particle counts measured by the two balloons on the open-closed boundary matched up to those observed by the other BARREL balloons hovering on closed or open field lines only. This observation strengths the case that BARREL’s balloons were actually crossing the boundary between solar and terrestrial magnetic field.

BREAKING NEWS: Magnetic Field Shifts Much Faster Than Expected

It was back in January 2014, when NASA’s Balloon Array for Radiation-belt Relativistic Electron Losses (BARREL)’s payload of thallium-activated sodium iodide, NaI(Tl) a crystalline material widely used for the detection of gamma-rays in scintillation detectors, saw something never seen before. During a moderate solar storm in which magnetic solar material collides with Earth’s magnetic field, BARREL mapped for the first time how the storm caused Earth’s magnetic field to shift and move.

earth's magnetic field lines

The fields’ configuration shifted much faster than expected – ‘on the order of minutes’ rather than hours or days. The results took researchers by such surprise causing them to check and re-check instruments and hypothesized outcomes. As a result, their findings were not published until last week on May 12 2016.

barrel

During the solar storm, three BARREL balloons were flying through parts of Earth’s magnetic field that directly connect a region of Antarctica to Earth’s north magnetic pole. One BARREL balloon was on a magnetic field line with one end on Earth and one end connected to the Sun’s magnetic field. And two balloons switched back and forth between closed and open field lines throughout the solar storm, providing a map of how the boundary between open and closed field lines moved.

“It is very difficult to model the open-closed boundary,” said Alexa Halford, a space scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “This will help with our simulations of how magnetic fields change around Earth, because we’re able to state exactly where we saw this boundary.”

solar-earth image cluster_m

We live in the path of the Sun’s outflow of charged particles, called the solar wind. Solar wind particles are accelerated to high speeds by explosions on the Sun or pushed along by plasma – clouds of solar material. Much of this magnetic field loops up and out into space, but then connects back to Earth at the north magnetic pole, near the Arctic Circle.

A portion of Earth’s magnetic field is open as it connects to the Sun’s magnetic field. This open magnetic field gives charged particles from the Sun a path into Earth’s atmosphere. Once particles are stuck to an open field line, they exceedingly accelerate down into the upper atmosphere. The boundary between these open and closed regions of Earth’s magnetic field is anything but constant. Due to various causes – such as incoming clouds of charged particles, the closed magnetic field lines can realign into open field lines and vice versa, changing the location of the boundary between open and closed magnetic field lines.

magnetic-shift

Scientists have known the open-closed boundary moves, but it is hard to pinpoint exactly how, when, and how quickly it changes – and that is where BARREL comes in. The six BARREL balloons flying during the January 2014 solar storm were able to map these changes, and they found something surprising – the open-closed boundary moves rapidly changing location within minutes.

It is possible, but unlikely, that complex dynamics in the magnetosphere gave the appearance that the BARREL balloons were dancing along this open-closed boundary. If a very fast magnetic wave was sending radiation belt electrons down into the atmosphere in short stuttering bursts, it could appear that the balloons were switching between open and closed magnetic field lines.

However, the particle counts measured by the two balloons on the open-closed boundary matched up to those observed by the other BARREL balloons hovering on closed or open field lines only. This observation strengths the case that BARREL’s balloons were actually crossing the boundary between solar and terrestrial magnetic field.

JUST IN: Study Affirms Jet Stream and Ocean Currents Cause of Sea Ice Differences at Earth’s Poles

Why has the sea ice cover surrounding Antarctica been increasing slightly, in sharp contrast to the drastic loss of sea ice occurring in the Arctic Ocean? A new NASA-led study finds the geology of Antarctica and the Southern Ocean is responsible. A team led by Son Nghiem of NASA’s Jet Propulsion Laboratory, Pasadena, California, used satellite radar, sea surface temperature, landform and bathymetry (ocean depth) data to study the physical processes and properties affecting Antarctic sea ice.

antarctica_ice_sheet

They found that two persistent geological factors, the topography of Antarctica and the depth of the ocean surrounding it are influencing winds and ocean currents, respectively, to drive the formation and evolution of Antarctica’s sea ice cover and help sustain it.

Equation:
Sunspots → Solar Flares (charged particles) → Magnetic Field Shift → Shifting Ocean and Jet Stream Currents → Extreme Weather and Human Disruption (mitch battros 1998).

equation2_1998

“Our study provides strong evidence that the behavior of Antarctic sea ice is entirely consistent with the geophysical characteristics found in the southern polar region, which differ sharply from those present in the Arctic,” said Nghiem. Antarctic sea ice cover is dominated by first-year (seasonal) sea ice. Each year, the sea ice reaches its maximum extent around the frozen continent in September and retreats to about 17 percent of that extent in February. Since the late 1970s, its extent has been relatively stable, increasing just slightly; however, regional differences are observed.

OLYMPUS DIGITAL CAMERA

Over the years, scientists have floated various hypotheses to explain the behavior of Antarctic sea ice, particularly in light of observed global temperature increases. Examples are: “changes in the ozone hole involved?” – “Could fresh meltwater from Antarctic ice shelves be making the ocean surface less salty” – “Are increases in the strength of Antarctic winds causing the ice to thicken.” Unfortunately, a definitive answer has remained elusive.

Nghiem and his team came up with a novel approach. They analyzed radar data from NASA’s QuikScat satellite from 1999 to 2009 to trace the paths of Antarctic sea ice movements and map its different types. They focused on the 2008 growth season, a year of exceptional seasonal variability in Antarctic sea ice coverage.

To address the question of how the Southern Ocean maintains this great sea ice shield, the team combined sea surface temperature data from multiple satellites with a recently available bathymetric chart of the depth of the world’s oceans. They found the temperature line corresponds with the southern Antarctic Circumpolar Current front, a boundary that separates the circulation of cold and warm waters around Antarctica. The team theorized that the location of this front follows the underwater bathymetry.

QuikScat satellite

When they plotted the bathymetric data against the ocean temperatures, the pieces fit together like a jigsaw puzzle. Pronounced seafloor features strongly guide the ocean current and correspond closely with observed regional Antarctic sea ice patterns.

Study results are published in the journal Remote Sensing of Environment. Other participating institutions include the Joint Institute for Regional Earth System Science and Engineering at UCLA; the Applied Physics Laboratory at the University of Washington in Seattle; and the U.S. National/Naval Ice Center, NOAA Satellite Operations Facility in Suitland, Maryland. Additional funding was provided by the National Science Foundation.

NASA uses the vantage point of space to increase our understanding of our home planet, improve lives and safeguard our future. NASA develops new ways to observe and study Earth’s interconnected natural systems with long-term data records. The agency freely shares this unique knowledge and works with institutions around the world to gain new insights into how our planet is changing.

Record High Temperatures…Or Are They? Let’s Blame El Nino

Thanks to a combination of global warming and an El Nino, the planet shattered monthly heat records for an unprecedented 12th straight month, as April smashed the old record by half a degree, according to federal scientists.

equation2_1998

And exactly what is El Nino? Science calls it the Southern Pacific Oscillation (ENSO). In English it simply means “shifting ocean and jet currents.” And what is the cause of this shifting? It is “charged particles” coming from above and below. This is to say from solar winds, and various plasma burst from celestial orbs.

Equation:
Sunspots → Solar Flares (charged particles) → Magnetic Field Shift → Shifting Ocean and Jet Stream Currents → Extreme Weather and Human Disruption (mitch battros 1998).

highest Temperatures by State3

ENLARGE

The National Oceanic and Atmospheric Administration’s monthly climate calculation said Earth’s average temperature in April was 56.7 degrees (13.7 degrees Celsius). That’s 2 degrees (1. 1 degrees Celsius) warmer than the 20th century average and well past the old record set in 2010. The Southern Hemisphere led the way, with Africa, South America and Asia all having their warmest Aprils on record, NOAA climate scientist Ahira Sanchez-Lugo said. NASA was among other organizations that said April was the hottest on record.

The last month that wasn’t record hot was April 2015. The last month Earth wasn’t hotter than the 20th-century average was December 1984, and the last time Earth set a monthly cold record was almost a hundred years ago, in December 1916, according to NOAA records.

At NOAA’s climate monitoring headquarters in Asheville, North Carolina, “we are feeling like broken records stating the same thing” each month, Sanchez-Lugo said.

And more heat meant record low snow for the Northern Hemisphere in April, according to NOAA and the Rutgers Global Snow Lab. Snow coverage in April was 890,000 square miles below the 30-year average.

Sanchez-Lugo and other scientists say ever-increasing man-made global warming is pushing temperatures higher, and the weather oscillation El Nino—a warming of parts of the Pacific Ocean that changes weather worldwide—makes it even hotter.

The current El Nino, which is fading, is one of the strongest on records and is about as strong as the 1997-1998 El Nino. But 2016 so far is 0.81 degrees (0.45 degrees Celsius) warmer than 1998 so “you can definitely see that climate change has an impact,” Sanchez-Lugo said.

Given that each month this year has been record hot, it is not surprising that the average of the first four months of 2016 were 2.05 degrees (1.14 degrees Celsius) higher than the 20th-century average and beat last year’s record by 0.54 degrees (0.3 degrees Celsius).

Last year was the hottest year by far, beating out 2014, which also was a record. But 2016’s start “is unprecedented basically” and in general half a degree warmer than 2015, Sanchez-Lugo said.

Even though El Nino is fading and its cooler flip side La Nina is forecast to take hold later this year, Sanchez-Lugo predicted that 2016 will end up the hottest year on record for the third straight year. That’s because there’s a lag time for those changes to show up in global temperatures and because 2016 has started off so much hotter than 2015, she said.

_science-of-cycles33

Mitch Battros and ‘Science of Cycles’
Research Sponsorship Fundraiser

** Be part of keeping ‘Science of Cycles’ alive and free.

**Your support is needed to keep this unique and valuable resource.

** Help sponsor us with your pledge as you see fit to the value you receive. 

 – CLICK HERE – 

UPDATE: New Finding Depicts Evidence how Modern Science and Ancient Text Unite

MAYAN’S NON-HOLLYWOOD TRUE TRANSLATION OF THEIR HOLY BOOKS VERIFIED BY MODERN SCIENCE

A recent news release which was published on April 29th 2016, describe a dramatic explosion occurred from a galaxy known as PKS B1424-418. Light from this blast began arriving at Earth in the year 2012. Now, an international team of astronomers, led by Matthias Kadler, professor for astrophysics at the University of Würzburg, has published their results in the scientific journal Nature Physics.

True, the acknowledgement of the 2012 event was noted and analyzed but was delivered in a mundane quiet manner due to the hysteria messages being put out about “the end of the world” and of course hollywood’s wildly over-the-top disaster movie. However, scientists I interviewed during this period were well are of Mayan prophecy and earnestly considered this coincidence.

At the same time, the high level Maya priesthood I interviewed were just as anxious to tone down the rhetoric of this set up grand pivotal point – and would speak of a more subtle movement which would involve the purging of old thoughts and habits and perhaps a time of inner reflection – I would add perhaps forced upon us as witnessed with the tough times many of us are in, and perhaps dealing unusual politics which could be an uplifting revelation realizing a broken system begging some 70 + years ago. Or it could be the nightmare many of us are fearing. Either way, change is upon us and maybe the shift comes not in the way of a decisional outcome, but how we handle, deal-with, accept or deny, empowerment or devolution.

bllac_highres

NOW FOR THE MORE SCIENTIFIC ELEMENTS
In the summer of 2012, NASA’s Fermi satellite witnessed a dramatic brightening of galaxy PKS B1424-418, as it was producing a gamma-ray blazar. The excess luminosity of the central region is produced by matter falling toward a supermassive black hole weighing millions of times the mass of our Sun. As it approaches the black hole, some of the material becomes channeled into particle jets moving outward in opposite directions at nearly the speed of light. In blazars one of these jets happens to point almost directly toward Earth.

“Within their jets, blazars are capable of accelerating protons to relativistic energies. Interactions of these protons with light in the central regions of the blazar can create pions. When these pions decay, both gamma rays and neutrinos are produced,” explains Karl Mannheim, a coauthor of the study and astronomy professor in Würzburg, Germany.

TANAMI

The scientists searching for the neutrino source then turned to data from a long-term observing program named TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry). Since 2007, TANAMI has routinely monitored nearly 100 active galaxies in the southern sky, including many flaring sources detected by Fermi. Three radio observations between 2011 and 2013 cover the period of the Fermi outburst. They reveal that the core of the galaxy’s jet had been brightening by about four times. No other galaxy observed by TANAMI over the life of the program has exhibited such a dramatic change.

IceCube Neutrino Observatory

A dramatic explosion occurred from a galaxy known as PKS B1424-418. Light from this blast began arriving at Earth in 2012. On Dec. 4, 2012, the IceCube Neutrino Observatory at the South Pole detected an event known as Big Bird – a neutrino gamma ray blazer with an energy exceeding 2 quadrillion electron volts (PeV). Now, an international team of astronomers, led by Matthias Kadler, professor for astrophysics at the University of Würzburg, has published their results in the scientific journal Nature Physics.

FULL ARTICLE – CLICK HERE

_____________

_science of cycles banner square

Mitch Battros and ‘Science of Cycles’
Research Sponsorship Fundraiser

**Be part of keeping ‘Science of Cycles’ alive and free.
**Your support is needed to keep this unique and valuable resource.

**Help sponsor us with your pledge as you see fit to the value you receive.

paypal donate_button_sm

If banner is not working Click Here

 

 

 

BREAKING NEWS: Earth’s Magnetic Field Continues Decline in Strength and Increase Rate of Movement

Presented at this week’s Living Planet Symposium, new results from the constellation of Swarm satellites show where our protective field is weakening and strengthening, and importantly how fast these changes are taking place.

magnetic field weakening

The Earth’s magnetic north pole is drifting from northern Canada towards Siberia with a presently accelerating rate of 10 kilometers (6.2 mi) per year at the beginning of the 20th century, up to 40 kilometers (25 mi) per year in 2003 – and since then has only accelerated. “At this rate it will exit North America and reach Siberia in a few decades, says scientist Larry Newitt of the Geological Survey of Canada.

magnetic field reversal

In addition, the magnetic north pole is wandering east, towards Asia. The current rate of change (since 1840) is about 0.07 degrees per year. But between 1225 and about 1550 AD, rates averaged closer to 0.12 degrees per year – significantly faster than expected.

VIDEO: Changes in Strength
of Earth’s Magnetic Field

magnetic field weakening3

Based on results from ESA’s Swarm mission, the animation shows how the strength of Earth’s magnetic field has changed between 1999 and mid-2016. Blue depicts where the field is weak and red shows regions where the field is strong. The field has weakened by about 3.5% at high latitudes over North America, while it has grown about 2% stronger over Asia. The region where the field is at its weakest field – the South Atlantic Anomaly – has moved steadily westward and further weakened by about 2%. In addition, the magnetic north pole is wandering east.

cosmic_rays_earth's_core_climate_cycle_lg

With more than two years of measurements by ESA’s Swarm satellite trio, changes in the strength of Earth’s magnetic field are being mapped in detail. It is clear that ESA’s innovative Swarm mission is providing new insights into our changing magnetic field. Further results are expected to lead to new information on many natural processes, from those occurring deep inside the planet to weather in space caused by solar activity.

Swarm_constellation

Launched at the end of 2013, Swarm is measuring and untangling the different magnetic signals from Earth’s core, mantle, crust, oceans, ionosphere and magnetosphere – an undertaking that will take several years to complete.

Although invisible, the magnetic field and electric currents in and around Earth generate complex forces that have immeasurable effects on our everyday lives.

The field can be thought of as a huge bubble, protecting us from cosmic radiation and electrically charged atomic particles that bombard Earth in solar winds. However, it is in a permanent state of flux.

The magnetic field is thought to be produced largely by an ocean of molten, swirling liquid iron that makes up our planet’s outer core, 3000 km under our feet. Acting like the spinning conductor in a bicycle dynamo, it generates electrical currents and thus the continuously changing electromagnetic field.

It is thought that accelerations in field strength are related to changes in how this liquid iron flows and oscillates in the outer core.

Chris Finlay, senior scientist at DTU Space in Denmark, said, “Unexpectedly, we are finding rapid localized field changes that seem to be a result of accelerations of liquid metal flowing within the core.”

Rune Floberghagen, ESA’s Swarm mission manager, added, “Two and a half years after the mission was launched it is great to see that Swarm is mapping the magnetic field and its variations with phenomenal precision.

“The quality of the data is truly excellent, and this paves the way for a profusion of scientific applications as the data continue to be exploited.”

In turn, this information will certainly yield a better understanding of why the magnetic field is weakening in some places, and globally.

Star With Different Internal Driving Force Than The Sun

A star like the Sun has an internal driving in the form of a magnetic field that can be seen on the surface as sunspots. Now astrophysicists from the Niels Bohr Institute have observed a distant star in the constellation Andromeda with a different positioning of sunspots and this indicates a magnetic field that is driven by completely different internal dynamics. The results are published in the scientific journal, Nature.

sun

Stars are glowing balls of gas that through atomic processes release energy that is emitted as light and heat. In the interior of the star are charged particles that swirl and spin and thereby create a magnetic field that can burst out onto the surface of the star, where it appears as sunspots. Sunspots are cool areas caused by the strong magnetic fields where the flow of heat is slowed. On our star, the Sun, the sunspots are seen in a belt around the equator, but now scientists have observed a large, distant star where sunspots are located near the poles.

Sunspots at the poles

“What we can observe on the star is that it has a large sunspot at its north pole. We cannot see the south pole, but we can see sunspots at latitudes near the poles and these sunspots are not there at the same time, they are seen alternately on the northern and southern hemispheres. This asymmetry of sunspots indicates that the star’s magnetic field is formed in a different way than the way it happens in the Sun,” explains astrophysicist Heidi Korhonen, Dark Cosmology Centre at the Niels Bohr Institute at the University of Copenhagen.

The star that has been observed is a massive star that is approximately 16 times the size of the Sun in diameter. It is located180 light years away in the constellation Andromeda. It is much too far away to be able to observe the details on the surface of a star that is only seen as a spot of light that is less than one pixel. Astronomers have previously seen sunspots on Zeta Andromeda using the Doppler method, which means that you observe that light wavelengths of the rotating star. Sunspots are cool areas and by studying the wavelengths you can construct a map of the surface temperature. So far this has been the best way to observe the surface structures of distant stars, but there may be misinterpretations, so there have been doubts about the accuracy concerning the existence of the polar sunspots.

But by using a method where you gather images from several different telescopes that you observe simultaneously, you can get far more details than you could achieve with even with the largest telescopes individually. But it was not easy. It is a method that has been used for decades in the radio waveband field and using the CHARA Array, consisting of six telescopes, it has now become possible to observe the visible and near-infrared light.

“With these new observations, we have many more details and extra high resolution. Our new measurements confirm that there are large sunspots at the poles. We see dark sunspots on the northern visible pole, while the observations reveal that the lower latitudes are areas with sunspots that do not last, but appear and disappear again with an asymmetrical distribution on the surface of the star and this was surprising,” says Heidi Korhonen, who is an expert on sunspots.

Powerful magnetic field

But why is the location of the sunspots different than those we know from the Sun?

Heidi Korhonen explains that it is a very different star than the Sun. It is a binary star, that is, two stars orbiting each other. This causes the stars to rotate more quickly. The Zeta Andromeda star, which is the larger of the two stars, rotates at 40 km per second. The Sun rotates at 2 km per second.

“It is the rapid rotation that creates a different and very strong magnetic field. The strong magnetic field gives a more complicated dynamo effect that resembles what you see at the stage where a new star is being created. Here we are seeing the same effect in an old active star that is in its final stage,” explains Heidi Korhonen.

On the Sun, the sunspots appear and disappear on a regular basis and the number increases periodically approximately every 11 years. The magnetic field that creates the sunspots can also trigger large, explosive discharges of plasma, causing solar storms to hit the Earth. These storms result in very strong northern lights and can also cause problems for orbiting satellites and the power grid on Earth.